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L_eft-over problems:

* The identity of dark matter

e Gauge hierarchy problem

 The 1dentity of inflaton field

Strong CP problem

* Baryogenesis

» Cosmological constant

QCD axion



|_eft-over problems:

e [[he 1dentity of dark matter |— misalignment mechanism

«[Gauge hierarchy problem | relaxion

*|Strong CP problem QCD axion

* The identity of inflaton field

* Baryogenesis — can be related to axion

» Cosmological constant |




Theory motivations:

Strong CP-problem: (0 — arg det Mq)g_sc,é
| )

v
0 <1010

Introduce axion field:

Couplings:
axion-gluon-gluon
axion-photon-photon
axion-fermion-fermion



Search strategies:

» axion-gluon-gluon coupling:

CASPEr (DM)
axion phase transition inside neutron stars

» axion-photon-photon coupling:

ADMX (DM)

CAST

ALPS

X-ray (Chandra, IXPE, Polstar)

» axion-fermion-fermion coupling:

stellar cooling
absorption in superconductor (DM)



Search strategies:

» axion induced birefringent effect (Harari & Sikivie 92)

1 1 1 n11% 1

1
The condensation of a CP-odd particle !
distinguishes helicities of a photon )( axion

= 0A: = +2ig.[0,06A1 — 60, A4]
* Only the derivatives on the axion
background can change photon’s EoM.

* The modifications are opposite for
different helicity.



Search strategies:

» axion induced birefringent effect
wy ~ k F 2g,+(0a/0t + 0,a)
different phase velocities for +/- helicities

A linearly polarized photon can be decomposed
Into the super-position of photons with +/- helicities.

—> change of position angle

NG = Ga~ Aa(tobs, Xobs ' temit xemit)

obs
n
Qay / ds n* 0,a
e

mit

Ga~ [a’(tob87 Xobs) a a(temita xemit)] .



Search strategies:

A region with:
a concentration of axion field
axion field is an oscillating background field
+ source for linearly polarized photon
the position angle, at emission, should be stable

Search for:
* position angle oscillates with time

» study the axion induced position angle change
as a function of spatial distribution.
(extended light source)

Scenarios: EHT-SMBH & pulsars measurements
Tao Liu, George Smoot, Y.Z.
arXiv:1901.10981 [astro-ph.CO]
Phys.Rev.D 101 (2020) 6, 063012



Event Horizon Telescope:

The Artzena Radio
Obsarvatory's
To geta good look at the light show coming from our galaxy's

. Subeillimater
black hole, astronom will combine the data from telescopes . Whascope
the world over. Here's a sample of the dozen telescopes that 2 g

may one doy be part of the Event Horizon Telescope
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Event Horizon Telescope:

April 6 April 10 April 11

Image of the supermassive black hole at the
center of the elliptical galaxy M87, for four
different days.



Tick Plot

Event Horizon Telescope:

April 5

April 6

EHT Collaboration (2021)

April 10

April 11
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Black hole superradiance:

P o T

jow Superradiance condition
ajym
< =
2T+
When Aa ~ GM:

a rapidly rotating black hole loses:
energy + angular momentum

axion cloud will be produced around BH
Energy in axion cloud can be comparable to BH mass!



Black hole superradiance:

The ring from EHT has a radius comparable to
the peaking radius of the axion cloud

L =Tg (1 = SV az,)

R/ R[rmax]




Axion cloud in non-linear region:

axion Lagrangian including self-interaction:
, 1 .
§ie /d%n\/—g[—g(Va)2 — (1 —cos fi)]

take

1 . .
e Ml + el
o G

slowly varying function

(1 =

non-relativistic limit: gravitational potential

L 1 )
SNR = /d4x (i'l;"f*é?t'qif — — O™ —
: 24t r

Hidetoshi Omiya’s talk leading self-potential term



Axion cloud in non-linear region:

axion self-interaction becomes important when

gravitational potential ~ self-interaction potential

a pas
- 42
two possible consequences:
bosenova: a drastic process which explodes away axion cloud

steady axion outflow to infinity

numerical simulation has been performed:

H. Yoshino and H. Kodama, Prog. Theor. Phys. 128, 153 (2012), etc
Hidetoshi Omiya’s talk



Axion cloud in non-linear region

(a) 4

=
Bosenova??? e.&

amplitude
L

Saturation???

fime

In either scenario, the amplitude of
the axion cloud remains O(1) of its
maximal value for most of the time
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Axion cloud induced position angle change:
b = amaar/fa

_beN
T Unfa  2fa

additional loop suppression to
translate fa to axion-photon coupling

be

Ae(rma:v) = _% COS [/-t Lemit + B(lxemit| — 7'ma:1:)]



Axion cloud induced position angle change:
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FIG. 2: AG(t = 0,0 = 3,7, ¢) assuming the rotation axis is
towards the observer. The amplitude of oscillation is around
87 at rring withl = 1, m = 1 state, @ = 0.4, ay = 0.99, exclud-
ing the region for » < r4. The time evolution is equivalent to
the rotation around ¢.



EHT expected sensitivity:

Yifan Chen, Jing Shu, Xiao Xue,
Qiang Yuan, and Y.Z.
Phys.Rev.Lett. 124 (2020) 6, 061102
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6(p)2n

Improved Search Strategy

Group 4-day data into two pairs (4/5,4/6) and (4/10,4/11).

Calculate the change of position angle, Ay(¢), for each pair.
Ax(p)) = —A(p) cos [wt + ¢ + d(p)]
The Ay(¢) calculated for each pair is related by a simple phase shitft.
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BH spin = 0.99

analytic RIAF using IPOLE,
the vertical magnetic field and sub-Keplerian velocity distribution



Event Horizon Telescope Results:

Polsolve method:
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Intensity-weighted averages within an
angular section of a width of 10°
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Y. Chen, Y. Liu, R. Lu, Y. Mizuno,
J. Shu, X. Xue, Q. Yuan, Y.Z.
Nature Astron. 6 (2022) 5, 592-598




Wash-out effect

 Incoherent photons
average out some of the Direct emission
axion effect a

 Lensed photon travels
through the accretion flow
for more times. Thus, it
gains more wash out.

EVPA after intensity-weighted averages:
a mixture of best signal region and the worst noise region



Optimization: breaking into smaller pixels

Reconstructing the polarization map:

EHT average image, April 5

|mlnet - 2.30/0
Total EVPA = -62.5°

1By 2| = 0.06
LBp > =-142.3°




Optimization: breaking into smaller pixels

Understanding the uncertainties:

Reconstruct EVPA for each pixel. Differential EVPA predicted by GRMHD
(ensembled within the top set) averaged over pixels and top set.
T 02001 —— P=_A 5", =083, xp= —0.28, 0=2.M
e —r 0.175 -
0.150+
6 |
0.125¢
40 - 0.100
0.075-
20 1 0.050

) 0.025+

T T T T T T T 0.000——
-3.0 -25 -2.0 -15 -1.0 -0.5 0.0 =100 =75

We only keep the pixels which can
fit well as a Gaussian function.

Pixels are not independent:
We include the off-diagonal elements when we calculate the chi-square.



Optimization: breaking into smaller pixels!
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Future

230 GHz flux (Jy)
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Conclusion

Astrophysics provides excellent probes to search for axion!

Supermassive Black holes:
A dense axion cloud can build up near by SMBHs.
Accretion disk emits linearly polarized photons.
EHT resolves the fine features near SMBHs.
EHT can provide measurements on position angles.
—> Probe the existence of axion clouds by EHT.

Many potential improvements in the future:
Refined analysis, without the radial average.
Frequency dependence.

More SMBHs with ngEHT.



Axion dark matter:

Axion is an excellent DM candidate!
Can be produced by misalignment mechanism.
Ultralight axion DM is expected to have a soliton core.
Pulsars are commonly producing stable linearly polarized photons.

(Milli)-second pulsars may be largely populated near the galactic center.

[—> Measurements on pulsar radiation provides an excellent
tool to study axion DM.



AXxion dark matter:

p(r) /{p?

-8 soliton solution

102/

(z) 0.019(;7= )2 ()" Mgpe 3, for r <,
p T) = |a..D ‘ -
‘T‘/RH(II-){ST/RH)Z’ ’ for r > lc NFW pl‘OfI|e




Pulsar measurements:

Most measurements are in radio-wave band.
Excellent on polarization measurements.

The properties of each pulse are not completely the same.
After averaging O(100) pulses, properties become stable.

Only a few pulsars are found near our galactic center.
VLA is expected to find many more.

Position angle accuracy ~ O(1) degree.



Sensitivity by pulsar measurements:
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Sensitivity by pulsar measurements:
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Conclusion

Astrophysics provides excellent probes to search for axion!

Supermassive Black holes:
A dense axion cloud can build up near by SMBHs.
Accretion disk emits linearly polarized photons.
EHT resolves the fine features near SMBHs.
EHT can provide measurements on position angles.
—> Probe the existence of axion clouds by EHT.

Pulsars:
Axion DM is concentrated near galactic center.
Pulsars emits linearly polarized photons.
—> Probe axion DM by pulsar measurements.



Event Horizon Telescope:

Accretion disk around SMBH gives linearly polarized radiation.

Millimeter wavelength: optimal for the position angle measurement!
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A subset of EHT has achieved a precision at 3 degrees!



Photon-Axion Mixing

IAXO " M87 (95% excl.)

1072 HETG (99.7% excl)
HETG (95% incl)
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Photon-Axion Mixing

Photons can also gain polarization
when they propagate through a magnetic field:

' NGC 1275 (IXPE, Polstar)
gayy =10 ° [GeV ™ '], convolved Galaxies 6 (2018) 2, 45

04r

A A A " " A A " A A A " A " A 1 A A A " 1
10 20 30 40 50
Energy [ keV]

Linear polarization degree

One can use the amount of polarization to search for the existence of axion.



Photon-Axion Mixing

| n the presence of an external magnetic field,
photons and axions can mix with each other

L = lF FHv 1 F ey lvp e 000 e a y
e= _1 % _590“,'(1‘ pv +§ a p-u'
YViNUaI
—>
B

plasma mass Faraday rotation

o
Afynx | a)

axion-photon mixing axion mass
magnetic field dependent



Photon-Axion Mixing

Photon survival probability, as a function of photon energy:
Different values of
the axion-photon
coupling

08F m=10""eV

2 5
Rest Energy (keV)

NGC 1275 (Chandra)
ApJ 2020, 890, 59

Search for axion by measuring the Search for axion by measuring the
axions produced by the Sun. X-ray spectrum.



