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What is the nature of the Black Hole candidate in the galactic center?

Is it described by the paradigmatic Kerr solution?

· · · or could models beyond Kerr mimic its phenomenology?
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We have entered a precision era for strong gravity:

motion of S-star orbits around Sgr A∗ Eisenhauer+, ApJ 628 246 (2005)

access to the black hole (BH) shadow image of Sgr A∗. EHT, ApJL 2022 ApJL 930 L12

S star orbits around SgrA∗ hot-spot orbiting Sgr A* observed image Sgr A∗

EHT, ApJL 2022 ApJL 930 L12GRAVITY, A&A 618, L10 (2018)Eisenhauer+, ApJ 628 246 (2005)

These observations can be used to test the true nature of Sgr A* (and BHs).

The shadow observation is connected to a special set of bound null orbits: Light Rings (LRs).
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A Light Ring (LR) is a (spatially closed) circular null geodesic orbit.

Photon Sphere as a collection of LRs

In spherically symmetry, the clustering of LRs forms a Photon Sphere.

LRs exist around Schwarzschild and Kerr BHs and very compact horizonless stars.
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Why are Light Rings relevant to observations?

Light Rings and similar limit orbits determine the BH shadow edge.

It leaves a signature of a sharp bright ring in an astrophysical image.

The Sgr A∗ image is consistent with the (blurred) image of a Kerr shadow.

Blurring
(due to low resolution)

Limit orbits

←− sharp bright ring
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Definition:
Ultra-Compact Objects (UCO) ⇐⇒ any object with a LR (with or without an horizon).

Motivation:
LRs are closely connected to direct astrophysical observables:

Electromagnetic channel → BH shadow edge.

GW channel → BH ringdown and Quasi-Normal modes. Goebel, Astro. Jour. 172 (1972)

McWilliams, PRL 122 191102 (2019)

Interest of UCOs:
Hypothetical exotic UCOs might mimic Kerr phenomenology because of LRs.
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A simple alternative to the Kerr paradigm are compact objects that have no horizon.

Example: Bosonic stars, which are horizonless solutions to scalar and Proca models:

Einstein-Klein-Gordon theory with a (complex) massive bosonic field

S =

∫
d4x

√
−g

[
R

16πG
−∇νϕ∇νϕ∗ − µ2ϕ∗ϕ

]
. (scalar)

S =

∫
d4x

√
−g

[
R

16πG
−

1
4
FαβF∗αβ −

µ2

2
AαA∗α

]
. (Proca)

This class of theories can lead to viable alternative Kerr objects:

within a consistent and well motivated (effective field) theory of gravity.

with a dynamical formation mechanism. Herdeiro, Radu PRL 119 26 261101 (2017)

can be (sufficiently) stable. Degollado+ 2018 PLB 781, 651; Sanchis-Gual+ PRL 123 22 221101 (2019)
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Simple example: Spherically-symmetric horizonless objects

The radial motion of light rays is 1D:

grr ṙ2 +

(
E2 − L2 H(r)2

gtt

)
= 0, H(r) =

√
−gtt

r
E is photon’s energy and L its angular momentum.

Conditions for a Light Ring: H′(r) = 0.

r

H(r)

Smooth deformation of metric fixing:

asymptotic behavior (asymptotic flatness), i.e. gtt → −1.

near origin behavior (smoothness), i.e. gtt ̸= 0.
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grr ṙ2 +

(
E2 − L2 H(r)2

gtt

)
= 0, H(r) =

√
−gtt

r
E is photon’s energy and L its angular momentum.

Conditions for a Light Ring: H′(r) = 0.

r

H(r)

←− Unstable LR

Stable LR−→

=⇒ Light Rings are created in pairs.

Smooth deformation of metric fixing:

asymptotic behavior (asymptotic flatness), i.e. gtt → −1.

near origin behavior (smoothness), i.e. gtt ̸= 0.
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This is not a feature restricted to Spherical symmetry:

1

Phys. Rev. Lett. 119 (2017) no.25, 251102

P. Cunha, E. Berti and C. Herdeiro

Theorem:
Horizonless UCOs must have at least two (non-degenerate) LRs, with one stable.
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Consider a 3+1 spacetime without any horizon (M, g) and with the assumptions:

stationarity and axial-symmetry.

regularity at the origin.

asymptotic flatness.

metric is C2-smooth (at least).

circularity and causality.
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The null geodesic flow is determined by H = 1
2 gµνpµ pν = 0.

This introduces a 2D potential U(r, θ) ≡ gab pa pb a, b ∈ {t, φ}.

Since tangent vector field along LR path is a linear combination of (only) ∂t, ∂φ:

At a Light Ring: =⇒ U = ∇U = 0 PRL 124 (2020) 18, 181101

It is possible to factorize U(r, θ) into simpler 2D potentials H±(r, θ):

At a Light Ring: =⇒ ∇H±(r, θ) = 0 PRL 124 (2020) 18, 181101

The± typically yields two different rotation directions.
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H = const.
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= ∇H

Rule 1 =⇒ a Maximum (or Min.) leads to (+1) full turns of vector field.
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= ∇H

Rule 2 =⇒ Saddle point leads to (−1) full turns of vector field (i.e. inverse sense).
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= ∇H

Rule 3 =⇒ number of full turns is additive, e.g. Saddle point (-1) + Max (+1) = 0.
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Origin boundary =⇒ regular Ricci scalar close to origin. PRL 124 (2020) 18, 181101
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Axis boundary =⇒ regular Ricci scalar close to axis. PRL 124 (2020) 18, 181101
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Conclusion: the total topological charge is zero!

Option 1: LRs do not exist inside the contour.
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Conclusion: the total topological charge is zero!

Option 1: LRs do not exist inside the contour.

Option 2: LRs exist but appear in pairs of charge {+1,−1}.
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The boundary conditions affect the total topological charge:

Horizonless Star (asymptotically flat):
∑

i wi = 0

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.Lett. 119 (2017) 25, 251102

Black Hole (asymptotically flat):
∑

i wi = −1

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.D 109 (2024) 6, 064050

Wormhole (asymptotically flat):
∑

i wi = −1

Phys.Rev.D 109 (2024) 12, 124065

Pedro V.P. Cunha The fate of the Light Ring instability



The boundary conditions affect the total topological charge:

Horizonless Star (asymptotically flat):
∑

i wi = 0

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.Lett. 119 (2017) 25, 251102

Black Hole (asymptotically flat):
∑

i wi = −1

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.D 109 (2024) 6, 064050

Wormhole (asymptotically flat):
∑

i wi = −1

Phys.Rev.D 109 (2024) 12, 124065

Pedro V.P. Cunha The fate of the Light Ring instability



The boundary conditions affect the total topological charge:

Horizonless Star (asymptotically flat):
∑

i wi = 0

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.Lett. 119 (2017) 25, 251102

Black Hole (asymptotically flat):
∑

i wi = −1

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.D 109 (2024) 6, 064050

Wormhole (asymptotically flat):
∑

i wi = −1

Phys.Rev.D 109 (2024) 12, 124065

Pedro V.P. Cunha The fate of the Light Ring instability



The boundary conditions affect the total topological charge:

Horizonless Star (asymptotically flat):
∑

i wi = 0

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.Lett. 119 (2017) 25, 251102

Black Hole (asymptotically flat):
∑

i wi = −1

Phys.Rev.Lett. 124 (2020) 18, 181101

Phys.Rev.D 109 (2024) 6, 064050

Wormhole (asymptotically flat):
∑

i wi = −1

Phys.Rev.D 109 (2024) 12, 124065

Pedro V.P. Cunha The fate of the Light Ring instability



w = +1w = −1 w = +1

Different types of Light Rings:

Saddle point of U(r, θ) → (w = −1) “standard” LR (Kerr) .

Local minimum of U(r, θ) → (w = +1) stable LR (exotic)

Local maximum of U(r, θ) → (w = +1) violates Null Energy Condition!
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Reasonable UCOs must have a stable LR =⇒ spacetime instability?

Paper by Keir: J. Keir, CQG 33 (2016) no.13, 135009 Benomio arXiv:1809.07795

Scalar linear waves ϕ can be treated as a model for nonlinear perturbations:

□gϕ+ F(r)ϕ = 0, (arbitrary F(r) > 0)

They define integrated “energy” measure E[ϕ](t) of wave ϕ across hypersurface Σt .

In proving non-linear stability, one usually requires uniform fast decay:

E [ϕ](t) ≲ 1
t2 E [ϕ](0), (polynomial decay)

If stable Light Ring exists, lower bound of uniform decay rate is slow:

E [ϕ](t) ≲ 1
[log(2 + t)]2

E [ϕ](0), (logarithmic decay)

This slow decay is highly suggestive that a spacetime instability exists.
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Possible implications?

If one has an horizonless UCO that would mimic the BH observations:

If unstable Light Ring exists =⇒ stable LR also exists (if NEC satisfied).

The stable LR might trigger a spacetime instability =⇒ not viable?

Questions:

Has this hypothetical instability manifested itself in a concrete UCO model?

What would be the timescale for such a putative instability?

What would be the UCO endpoint state after the instability develops?
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Plan of the talk

1 Why Light Rings (LRs) are relevant for observations.

2 LRs around horizonless compact objects

3 The fate of the Light Ring instability

Pedro V.P. Cunha The fate of the Light Ring instability



Phys. Rev. Lett. 130 (2023) 061401

Pedro V.P. Cunha The fate of the Light Ring instability



Solution diagram of Proca Stars

first solution with a LR pair

−→

stable

unstable
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Solution diagram of Boson Stars with sextic self-interactions

Pedro V.P. Cunha The fate of the Light Ring instability



Time it takes for the instability to begin during the time evolution:

The timescale diverges as we approach the solution where the LR disappears.

For the mass of Sgr A∗, an instability timescale Tµ ∼ 103 is around ∼ 6 h.
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To monitor the LRs in a dynamical spacetime we will introduce an

adiabatic effective potential V±(r, t).

This is well motivated if the dynamical evolution is:

slow enough in time.

violations of axial-symmetry are mild.

Pedro V.P. Cunha The fate of the Light Ring instability



To monitor the LRs in a dynamical spacetime we will introduce an

adiabatic effective potential V±(r, t).

This is well motivated if the dynamical evolution is:

slow enough in time.

violations of axial-symmetry are mild.

Pedro V.P. Cunha The fate of the Light Ring instability



To monitor the LRs in a dynamical spacetime we will introduce an

adiabatic effective potential V±(r, t).

This is well motivated if the dynamical evolution is:

slow enough in time.

violations of axial-symmetry are mild.

Pedro V.P. Cunha The fate of the Light Ring instability



To monitor the LRs in a dynamical spacetime we will introduce an

adiabatic effective potential V±(r, t).

This is well motivated if the dynamical evolution is:

slow enough in time.

violations of axial-symmetry are mild.

Pedro V.P. Cunha The fate of the Light Ring instability



The adiabatic effective potential V±(r, t) takes the explicit form:

V±(r, t) = Mt

⟨gtφ⟩ ∓
√

⟨gtφ⟩2 − ⟨gtt⟩ ⟨gφφ⟩
⟨gφφ⟩

.

Violations of axial-symmetry diluted by averaging over ϕ:

lapse function: N2 −→
〈
N2〉 =

1
2π

∫ 2π

0
N2 dφ

We can also time-average to wash away star-oscillations around a trend:

V∗±(r, t) =
1

2 T(t)

∫ t

t−2 T(t)
V±(r, τ) dτ,

−→ T(t) is a measure of the oscillation period of the lapse N(t).
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Following the location of LRs during the evolution of PSs:
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The road ahead and conclusions

Testing the Kerr-paradigm is very challenging....

One step is to rule out classes of inadequate models as BH alternatives.

The numerical evidence presented supports the inadequacy of a large class of UCOs.

1

There might exist possible mechanisms to avoid this conclusion:

a) topological non-triviality, e.g. wormholes.

b) non-axisymmetry of the horizonless UCO.

c) non-circularity.
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