LOOKING FOR ULTRALIGHT SCALARS WITH LVK BINARIES

Rodrigo Vicente (IFAE, Barcelona)

w/ Soumen Roy (NIKHEF, Amsterdam)

July 5th, 2024 New horizons for Psi (Lisbon, IST)

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

HOW LIGHT IS "ULTRALIGHT"?

Wave vs Particle

 $\lambda_{dB} \equiv$

 $\frac{2\pi}{m_{\psi}\nu}$

ASSE SS

PARTICLE DM VS SMALL-SCALE OBSERVATIONS

$$\lambda_{dB} \sim 0.5 \, kpc \left(\frac{10^{-22} \, eV}{m_{\psi}} \right) \left(\frac{250 \, km/s}{\nu} \right)$$

GRAVITATIONAL CHEMISTRY (THE ATOM)

••• •••

$$\lambda_{\rm dB} \gtrsim \left(\frac{r_g}{20M_\odot}\right) \left(\frac{10^{-10}\,{\rm eV}}{m_\psi}\right)$$

GRAVITATIONAL CHEMISTRY (THE MOLECULE)

Ikeda, et al. [2010.00008]

$$\lambda_{\rm dB} \gtrsim \left(\frac{R}{12 \times 2 \times 10 M_{\odot}}\right) \left(\frac{10^{-11} \, \rm eV}{m_{\psi}}\right)$$

CAN WE DO (GRAVITATIONAL) CHEMISTRY WITH GWS?

BUT... FIRST, A (NOT SO) SLIGHT DETOUR

THE ENVIRONMETS WHERE COMPACT BINARIES LIVE IN

Tagawa, Haiman, Kocsis [1912.08218]

Zwick, Capelo, Mayer [2209.04060]

"If the goal is to maximise the science yield of future missions, the community could be better served by shifting the focus from the source of GWs to its surroundings"

HOW EMPTY IS THE VACUUM OF LVK SOURCES? (THE NR WAY)

Fedrow et al. [1704.07383]

HOW EMPTY IS THE VACUUM OF LVK SOURCES? (THE PHENOM WAY)

$$\tilde{h} = A(f)e^{i\Phi(f)}$$
where $A \approx \frac{h[t(f)]}{2\sqrt{f}}$ and $\Phi \approx 2\pi ft_c - \varphi_c - \frac{\pi}{4} - 2\pi \int_f^\infty df'(\frac{f-f'}{f})$

$$\begin{split} \dot{L} &= \tau_{gw} + \tau_{df} \\ \text{where} \quad \tau_{df} \approx \frac{4\pi \rho_{\psi} M^2}{(\pi M f)^{\frac{1}{3}}} I_{df}(\cdot, q_2, M f) \quad \text{and} \quad \dot{m}_i = \rho_{\psi} A_i I_{acc}(\cdot, q_2, M f) \end{split}$$

11

HOW EMPTY IS THE VACUUM OF LVK SOURCES? (NR VS PHENOM)

 $I_{df}(Mf) = 1$ and $I_{accr}(Mf) = (4\pi Mf)^{-1}$ (Hoyle-Lyttleton)

HOW EMPTY IS THE VACUUM OF LVK SOURCES? (NR vs Phenom)

HOW EMPTY IS THE VACUUM OF LVK SOURCES? (NR vs Phenom)

 $\log_{10} \mathcal{B}_{vac}^{env} \approx 2.5$

... AND WITH NEXT-GEN. INTERFEROMETERS?

$$\begin{split} \rho_{fragm} \left[g/cm^3 \right] \gtrsim 10^7 \\ \rho_{thin} \left[g/cm^3 \right] \lesssim 10^{-1} (10^5 M_{\odot}/m_3)^{7/10} \\ \rho_{thick} \left[g/cm^3 \right] \lesssim 10^{-8} (10^5 M_{\odot}/m_3) \end{split}$$

$$\begin{split} \rho_{SR} \left[g/cm^3 \right] &\lesssim 10^{-1} (10^5 M_{\odot}/m_3)^2 \\ \rho_{spikes} \left[g/cm^3 \right] &\lesssim 10^{-6} \\ \rho_{solit} \left[g/cm^3 \right] &\lesssim 10^{-19} \end{split}$$

Santoro, et al. [2309.05061]

So, but... how about the ψ ?

HOW BINARIES COALESCE IN SCALAR ENVIRONMENTS? (THE NR WAY)

Aurrekoetxea, et al. [2311.18156]

HOW BINARIES COALESCE IN SCALAR ENVIRONMENTS? (THE PHENOM WAY)

$$\left[\Box_{\eta} - \mathfrak{m}_{\psi}^{2}(1 - 2\Phi)\right]\psi(x) = 0$$

with
$$\Phi = -\frac{M}{r} \left\{ 1 + \sum_{\ell_* \ge 1} \sum_{m_* \le \ell_*} Y_{\ell_* m_*}^* (\theta_{2*}, \varphi_{2*}) Y_{\ell_* m_*} (\theta, \varphi) F_{\ell_* m_*} (r) \right\}$$
$$F_{\ell_* m_*} \equiv \frac{4\pi\alpha}{2\ell_* + 1} q_2 \left[1 + (-1)^{\ell_*} q_1 q_2^{\ell_* - 1} \right] \left(\frac{r_{2*}}{r} \right)^{\ell_*} \sim (R/\lambda_{dB})^{\ell_*}$$
$$\implies I_{df} = (\cdots)$$

 $I_{accr}(v_i \gg m_{\psi} M_i) \approx 1$

HOW BINARIES COALESCE IN SCALAR ENVIRONMENTS? (CONSTRAINTS)

 $GW150914 [M_1 \sim 36M_{\odot}, M_2 \sim 29M_{\odot}, M_f \sim 62M_{\odot}, SNR = 24] \implies \log_{10} \rho[g/cm^3] \approx 6.6$ $GW151226 [M_1 \sim 14M_{\odot}, M_2 \sim 7.5M_{\odot}, M_f \sim 21M_{\odot}, SNR = 13] \implies \log_{10} \rho[g/cm^3] \approx 4.6$ $GW170608 [M_1 \sim 12M_{\odot}, M_2 \sim 7M_{\odot}, M_f \sim 18M_{\odot}, SNR = 12] \implies \log_{10} \rho[g/cm^3] \approx 4.3$

$$\rho \sim 10^7 \, g/cm^3 \, \frac{q_{\Phi}}{0.1} \Big(\frac{\alpha_1}{0.05}\Big)^6 \Big(\frac{10 M_{\odot}}{M_1}\Big)^2$$

TAKEAWAY

- Environmental effects may be observable by near-future GW detectors
- Current data from LVK may already be used to constrain the presence of scalar environments
- Better (semi)analytic waveforms might be needed (NR injections vs Phenom)
- Better modelling of binary history would be needed to probe the existence of ultralight bosons