Tests of LCDM from WP perspective: methods and pipelines

Hsin-Yu Chen

Fundamental Physics with LISA, August 2023

The expansion history of the Universe

 $H(z) = H_0 \sqrt{\Omega_M (1+z)^3 + \Omega_k (1+z)^2 + \Omega_\Lambda (1+z)^3 (1+w)}$

Astrophysical sources at different redshift range constrain different part of the expansion history.

Tensions in cosmological measurements

Lusso et al., A&A, 2020

2-3σ

Independent measurement of the cosmological parameters-Standard siren method

4 Standard siren with electromagnetic counterparts-determine the redshift of gravitational-wave source with the *host galaxy*

 $H(z) = H_0 \sqrt{\Omega_{\rm M} (1+z)^3 + \Omega_k (1+z)^2 + \Omega_\Lambda (1+z)^{3(1+w_0+w_a)} e^{-3w_a z/(1+z)}}$

Hsin-Yu Chen / UT Austin

Schutz, Nature, 1986 / Holz & Hughes, ApJ, 2005

DARK SIREN

When there's no electromagnetic counterpart-it's difficult to identify the host galaxy

Combine the redshifts of all possible host galaxies.

Schutz, Nature, 1986/ Del Pozzo, PRD, 2011

Heavily relies on the availability/completeness of galaxy catalog.

SPECTRAL SIREN The detected mass and distance distribution of the binaries carries cosmological information too

Detector-frame mass (1+z)M

Taylor et al., PRD, 2012/Farr et al., ApJL, 2019/Mastrogiovanni, PRD, 2021/ Ezquiaga&Holz, PRL, 2022 The as The cosmological and population consis parameters have to be inferred jointly. Hsin-Yu Chen / UT Austin

Electromagnetic counterpart [BRIGHT SIREN]

Galaxy catalog DARK SIREN

Population [SPECTRAL SIREN]

Latest LIGO-Virgo-KAGRA standard siren measurement

+ 2 neutron star-black hole mergers + GW190814 $H(z) = H_0 \sqrt{\Omega_M (1+z)^3 + \Omega_k (1+z)^2 + \Omega_\Lambda (1+z)^{3(1+w)}}$

What will be different in the LISA era?

Standard siren sources

Gravitational-wave sources for standard sirens

What will be different in the LISA era?

Standard siren sources

11

Redshift range

Detectable redshift

z>15-20

z<3

Stellar-origin black hole binaries

z<0.1

LISA

Stellar-origin binary black hole binaries

-No widel Deccepted electron agnetic counterpart identified so far \rightarrow **Dark Siren** H(z') $H(z) = H_0 \sqrt{\Omega_M (1+z)^3 + \Omega_k (1+z)^2 + \Omega_\Lambda (1+z)^{3(1+w)}}$ [Need further verification: intermediate-mass black hole mergers may produce light.] Graham et al., PRL (2020)

Extreme mass ratio inspirals

z<3

Hsin-Yu Chen / UT Austin

LISA

Extreme mass ratio inspirals

-LISA will detect them further away \rightarrow Measurement of dark energy equation-of-state (w) in addition to H₀

-No electromagnetic counterpart expected → Dark Siren

Hsin-Yu Chen / UT Austin

Massive black hole binaries

Massive black hole binaries

-LISA will detect them up to z=15-20 → Constraint on H(z) at high z

-Potential electromagnetic counterpart emission in optical/x-ray/radio→**Bright Siren** Tamanini et al., JCAP, 2016

-The number of bright sirens is highly uncertain:

-Black hole seeding models

-EM emission models

Hsin-Yu Chen / UT Austin

18

Independent cosmological measurement across cosmic history

Tamanini, LISA Symposium, 2016

Hsin-Yu Chen / UT Austin

LISA

Accuracy of the measurements

Systematic uncertainties

Potential sources of systematics

Distance

Potential sources of systematics

Distance

Population distribution

EM selection

²³ Systematics associated with the <u>distance</u> measurement

Instrumental calibration uncertainty

Sun et al., CQG (2020) / Sun et al., 2107.00129 -Imperfect conversion from the voltage signals to the data stream.

Potential sources of systematics

Distance

Systematics associated with the distance measurement

Weak Lensing

 $-D_L' = (1 - \kappa)D_L$

 κ is the convergence for the lensing by large scale structure

-2% for z<1, 5% at z=2

-Can be reduced with galaxy survey Hilbert et al, MNRAS (2011)/ Hilbert et al, PRD (2010)

-Selection effect for high-redshift sources

Cusin and Tamanini, MNRAS (2021)

-Redshift+LISA luminosity distance measurement can be used to constrain the clustering parameters.

Cutler and Holz, PRD (2009)/Camera and Nishizawa, PRL (2013)/ Congedo and Taylor, PRD (2019)

Potential sources of systematics

Distance

Systematics associated with the population

Distribution of the merger population

Hsin-Yu Chen / UT Austin

Abbott et al., ApJ in press

Potential sources of systematics

Distance

Systematics associated with the population

Counterpart selection effect

-Variation of counterpart observability as a function of the binary parameters, e.g. viewing angle, mass, and spin.

Maximum EM observable viewing angle

Hsin-Yu Chen / UT Austin

Chen, PRL (2020)

Systematics associated with the population

Counterpart selection effect

-Variation of counterpart observability as a function of the binary parameters, e.g. viewing angle, mass, and spin.

Chen, Talbot, Chase, 2307.10402

Potential sources of systematics

Distance

We currently are lack of comprehensive estimate/mitigation for many of these systematics in standard siren measurements.

Population

Population distribution

EM selection

Science Objectives of the WP

-Map the expansion rate of the Universe at all redshifts

-Test the standard cosmological model

Available Tools: for LISA

- <u>CosmoLISA</u>
- Laghi et al, MNRAS (2021) -LISA (and 3G) bright and dark siren forecast.
- -Publicly available: <u>github.com/wdpozzo/cosmolisa</u> Laghi & Del Pozzo
- -Proposed to be a colalborative project for LISA working group.

-Still need to implement spectral siren and several necessary technical details (e.g., selection effect, incompleteness of galaxy catalogue).

Available Tools: for LIGO/Virgo/KAGRA

-ICAROGW Mastrogiovanni et al, PRD (2023)

Dark siren + Spectral siren

Gray et al, to be on arXiv Dark siren + Spectral siren

-<u>DarkSirensStat</u>

Finke et al, JCAP (2021)

Dark sirens and modified GW propagation.

To be developed

-Bright+dark+spectral siren inference.

-Comprehensive estimate of the systematics.

-Mitigation of the systematics.

Horizon/PE uncertainty for stellar mass BBH

Source type	Masses $[M_{\odot}]$	red D_L [kpc]	yellow D_L [kpc]	green D_L [kpc]
BBH low	5 + 5	580	1164	2330
BBH mid	10 + 10	1849	3697	7396
GW150914	36 + 29	13031	26062	52129
GW190814	85 + 65	52875	105749	214603

Table 2: Maximum luminosity distances for $T_{obs} = 4 \text{ yr}$ (6 yr at 75% duty cycle) assuming an averaged sky location, polarization, and inclination. The green FoM is assuming the current mission design, yellow (red) is current mission design but $T_{obs} = 1 \text{ yr}$ (3 mo) to mimic sensitivity degradation

	1100/11	D.D.	TICA	
	LIGO/Virgo	ET	LISA	ET+LISA
$\Delta \Omega \ [deg^2]$	$5.6 imes 10^2$	5.1	2.5	2.2×10^{-1}
$\Delta d_L/d_L$	3.6	3.4×10^{-1}	4.3×10^{-1}	$3.9 imes 10^{-2}$
$\Delta M/M$	3.6×10^{-1}	3.3×10^{-3}	4.1×10^{-7}	$2.0 imes 10^{-7}$
$\Delta \iota / \iota$	5.9	4.7×10^{-1}	9.3×10^{-1}	6.5×10^{-2}
$\Delta \chi_1 / \chi_1$	3.9	2.8×10^{-2}	3.3×10^{-1}	8.6×10^{-4}
$\Delta\chi_2/\chi_2$	3.8	$3.0 imes 10^{-2}$	4.6×10^{-1}	1.4×10^{-3}

TABLE III. Medians of the uncertainty distributions of each parameter for LIGO/Virgo, ET, LISA and the network ET+LISA, assuming 10 years LISA mission time. Here \mathcal{M} represents the *chirp mass* of the system, defined as $\mathcal{M} = (M_1 M_2)^{(3/5)}/(M_1 + M_2)^{(1/5)}$ and its uncertainty is obtained through error propagation formulas.

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 38

-A+ and Voyager still at percent level. Subpercent level precision is possible in CE era.

-Kilonovae are better than GRBs for H₀ constraint. <u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 39 <u>Cosmological constraints from bright sirens in 2.5-3G</u>

-GRBs are better than kilonovae to constrain Ω_m and w.

-One order of magnitude fewer GRBs (with beaming) is needed to achieve the same precision as kilonovae.

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 40

Cosmological constraints from bright sirens in 2.5-3G

-Swift-like GRB telescope with larger field-of-view and better sensitivity is in need in the CE era.

-Otherwise, dedicated VRO-like telescope is needed in absence of the GRB telescope described above.

