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Abstract

Lecture Proceedings in “New Horizons for Ψ”: In these lectures we are going to use standard techniques
from Black-Hole Perturbation Theory to understand what is the effect that the presence of a superradiant
(scalar) cloud around a supermassive black hole has on the trajectory of a stellar-mass compact body around
it. We will then use our results to assess if future GW observations can help probing ultralight fields using
the inspiral stage of binary coalescences.
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1 Introduction

These notes guide a 2-hour lecture on Extreme-Mass-Ratio Inspirals (EMRIs) in Fundamental Fields for
the New Horizons for Ψ School & Workshop, hosted at Instituto Superior Tecnico, University of Lisbon,
from 1–5 July 2024.

Let us start by dissecting our title. First, what are EMRIs? They are binary systems where a stellar-mass
secondary compact body with mass mp, orbits around a much more massive object, with massM , such that
their mass ratio ϵ = mp/M ≲ 10−4 (systems where 10−4 ≲ ϵ ≲ 10−2 are known as intermediate-mass-ratios
inspirals – IMRIs) [1]. And where can we find such systems? The obvious example is the center of a galaxy,
where a population of compact objects like stars, neutrons stars, or stellar-mass black holes (BH) is dancing
around a central supermassive BH (SMBH), with M ≳ 105M⊙ [2]. And why should we care about EMRIs?
In 2035, the European Space Agency is going to launch the Laser Interferometer Space Antenna (LISA),
a constellation of 3 satellites trailing the Earth, separated by 2.5 × 106 km, that will be operating as a
gravitational-wave (GW) interferometer sensitive to mHz frequencies [3]. EMRIs complete ∼ 105 orbital
cycles while in the LISA frequency range and can stay in band for the full 4 years of the mission [1, 4, 5].
This allows to constrain the parameters of the system with a relative precision as small as 10−5 (check
Tables 3.6 − 3.7 in the LISA Definition Study Report [3]), which will allow for the most stringent tests
to General Relativity (GR) and Relativistic Astrophysics ever made [6–8], representing an improvement of
104 orders of magnitude with respect to current ground-based detectors [9]. However, this large number of
orbital cycles is also synonymous with extremely complex trajectories and waveforms, which represent one of
the hardest challenges in modelling and data analysis for LISA [10,11]. The disparity of mass scales between
the secondary and primary makes EMRIs intractable to be tackled by Numerical Relativity (although see
Ref. [12] for substantial progresses on IMRIs). Instead, the self-force program aims to solve the EMRI
two-body problem by expanding the Einstein’s equations in the mass-ratio ϵ [13, 14]. For the purposes of
LISA, this expansion will need to be carried up to order O(ϵ2) [11].

Moving to the second part of the title, Fundamental Fields are the common theme of the school. At this
stage, you are probably already familiar with some of the reasons to study them. New (ultra)light bosonic
fields appear naturally in several extensions of GR in a wide range of mass scales mΨ ∼ 10−6 − 10−23 eV
and have been proposed as a dark matter (DM) candidate [15–20]. From a technical standpoint, they are
the simplest extension of vacuum-GR one can consider, so there is an “agnostic” pedagogical aspect in
their study. But there is also astrophysical motivation behind it. When the field’s Compton wavelength
λc = 1/µ = mΨ/ℏ is comparable to the BH size, i.e. Mµ ≲ 0.5, the field can extract rotational energy from
the BH via superradiance (the wave analogous of the Penrose process) and condensate into boson clouds with
an hydrogen atom-like structure [21–30]. These clouds are non-spherical and if the field is real emit GWs
which can appear as continuous monochromatic sources or as collective stochastic GW background. Ground-
based GW detectors, like the LIGO-Virgo-Kagra collaboration, target stellar-mass BHs, which probe masses
around µ ∼ 10−13 eV [31–34]. On the other hand, the fields can form self-gravitating structures, known as
boson stars or DM solitons, which describe well the core of DM halos when they are “fuzzy”, i.e., their mass
is mΨ ∼ 10−23 − 10−19 eV) [35–44]. In particular, in this mass range the de Broglie wavelength is ≳ kpc,
and thus the field exhibits wave-like behavior, which helps in solving some tensions of the canonical Λ-CDM
model at “small” length scales, such as the cuspy-halo problem [45–47].

EMRIs are present in galactic centers and we should therefore consider the impact that the presence
of a ultralight bosonic environment has on their trajectory and subsequent GW signature. Here, we will
focus on the simplest system we can think of involving an EMRI and a bosonic environment: a circular
inspiral around a non-rotating BH surrounded by a spherical (complex) scalar cloud. This problem has
been solved in Refs. [48, 49] (where Ref. [49] draws heavily from [50, 51]). Refs. [52–55] also made several
important contributions using techniques from Quantum Mechanics, which we will discuss at the end.
Alongside the notes, there is a Mathematica notebook with a derivation of the equations of motion and a
(rudimentary) ODE solver. My main focus was trying to be pedagogical and ensure someone who is doing
these computations for the the first time can follow, so the system we will study is not the most realistic one
and the code I provide is not the most robust (do not be surprised if you start playing with the parameters
and something breaks!). But I hope that you can understand this simpler case and build from the tools
provided if you want to explore further. Finally, let me thank Richard Brito, Andrea Maselli and Rodrigo
Vicente, whose codes I have used as an inspiration.
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2 Theoretical Setup

2.1 Action

Our starting point is a minimally coupled complex scalar Ψ evolving on an asymptotically flat spacetime
described by the action [we work in geometrized units G = c = 1 and use the metric signature (−+++)]

S =

∫
d4x

√
−g
(

1
16πR− 1

2∂µΨ∂
µΨ∗ − 1

2V (Ψ∗Ψ) + Lm
)
, (1)

where R is the Ricci scalar, V is the self-interaction potential of the scalar field, and Lm describes the matter
sector, which interacts with the scalar only via the minimal coupling to the metric gµν .

Exercise. Check that this theory has a global U(1) symmetry with associated Noether current and
charge, respectively,

Jµ
Q = 2gµνIm [Ψ∗∂νΨ] , Q =

∫
d3x

√
−gJ t

Q, (2)

and that varying the action above gives you the Einstein-Klein-Gordon system

Gµν = 8π(TΨ
µν + Tm

µν) , 2gΨ =
∂V

∂|Ψ|2
, (3)

where 2g ≡ ∂µ [
√
−g ∂µ (·)] /

√
−g, plus a set of equations for the matter sector. Here, Gµν is the Einstein

tensor and the energy-momentum tensors of the scalar and matter are

TΨ
µν = ∇(µΨ

∗∇ν)Ψ− gµν
2

(∇αΨ∗∇αΨ+ V ) , Tm
µν =

−2√
−g

[
δ(
√
−gLm)

δgµν

]
. (4)

As mentioned above, the large mass-ratio of our setup makes it suitable for a perturbative scheme. We
will model the secondary as point particle of mass mp, whose Lagrangian density and energy-momentum
tensor are

Lm = mp

∫
dτ 1√

−g
δ(4) [x− xp(τ)] , Tµν

m = mp

∫
dτ

1√
−g

δ(4) [x− xp(τ)] ẋ
µ
p ẋ

ν
p , (5)

where xp(τ) is the particle worldline parameterized by its proper time τ . This point particle is sourcing
perturbations to a background spacetime which solves the Einstein-Klein-Gordon system at 0-th order and
will represent the primary BH and the scalar field distribution around it. We are interested in finding
solutions to first-order in ϵ

gµν = ĝµν + ϵ δgµν +O(ϵ2) , Ψ = Ψ̂ + ϵ δΨ+O(ϵ2) . (6)

2.2 The background

We will focus on spherically-symmetric background spacetimes (we had to start somewhere... in the end
we will briefly discuss on how to extend this for the rotating case), for which the line element in spherical
coordinates and the background scalar field are

dŝ2 ≡ ĝµνdx
µdxν ≈ −A(r)dt2 + dr2

B(r)
+ r2(dθ2 + sin2 θdφ2) , Ψ̂ ≈ Ψ0(r)e

−iωt . (7)

In general, the field’s frequency ω is a complex number obtained from solving the 0-th order Einstein-Klein-
Gordon system with appropriate boundary conditions (ingoing at the primary BH horizon and regularity
at large r). In fact, no-hair theorems prevent the existence of spherically symmetric static solutions, i.e.
solutions where Im(ω)̸= 0. However, for sufficiently light fields, the accretion timescale, which is dictated by
τacc ∼ 1/Im(ω), can be much larger than the observation/inspiral timescale of an EMRI. For DM solitons,
whose mass is typically much larger than the BH mass – our own Milky Way has a supermassive BH with
2× 106M⊙ and core DM halo estimated to have ∼ 109M⊙ – the accretion timescale is [44]

τ solitonacc ≲ 10

(
1010M⊙
MΨ

)5 ( mΨ

10−22 eV

)6
Gyr , (8)
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which can be bigger than the Hubble time (τHubble ∼ 14×10−1Gyr). For boson clouds, whose mass is much
smaller than the primary, the decay is exponential on timescales (for spherical configurations) [44]

τ cloudacc ≲ 5× 109
(
108M⊙
MΨ

)5 ( mΨ

10−22 eV

)6
Gyr . (9)

Then, we will assume the EMRI is inspiralling, or we are observing it, on a timescale much shorter than
this accretion timescale. In this limit, we can take Im(ω) = 0 (this approximation is also used in both
Refs. [48, 49]). Recall also that in the case of superradiant clouds, their growth ends in a true bound state
around Kerr, with Re(ω) = mΩH and Im(ω) = 0, where ΩH is the horizon’s angular velocity [29].

2.3 The perturbations

The spherically symmetry of our background spacetime implies that any linear perturbation can be de-
composed into irreducible representations of SO(3). For scalars, this is the standard expansion in spherical
harmonics Yℓm(θ, φ)

δΨ =
1

r

∑
ℓ,m

∫
dσ δψℓm

+ (r) e−i(ω+σ)tYℓm(θ, φ) , δΨ∗ =
1

r

∑
ℓ,m

∫
dσ δψℓm

− (r) e−i(ω−σ)t Yℓm(θ, φ) , (10)

where
∑

ℓ,m ≡
∑∞

ℓ=0

∑ℓ
m=−ℓ and we move to Fourier domain t → σ. We treat δΨ and δΨ∗ as independent

variables because with this decomposition we obtain equations of motion independent of the coordinate time
t. To leave our equations as general as possible before applying them to a particular system, we expand the
scalar field potential and its first derivative as

V ≈ V̂ +
∑
ℓ,m

∫
dσδV ℓm(r)e−iσtYℓm(θ, φ) , U ≡ ∂V

∂|Ψ̂|2
≈ Û +

∑
ℓ,m

∫
dσδU ℓm(r)e−iσtYℓm(θ, φ) . (11)

Analogously, gravitational perturbations δgµν can be expanded in a basis of ten tensor spherical harmon-
ics (the number of independent components of a rank-2 symmetric tensor), which depending on how they
transform under parity transformations (θ, φ) → (π − θ, π + φ), can be grouped into polar/electric/even (do
not change) or axial/magnetic/odd type (pick a − sign)

δgaxial =
∑
ℓ,m

√
2ℓ(ℓ+ 1)

r

[
i hℓm1 cℓm − hℓm0 c0ℓm +

√
(ℓ+ 2)(ℓ− 1)

2
hℓm2 dℓm

]
, (12)

δgpolar =
∑
ℓ,m

AHℓm
0 a0

ℓm − i
√
2Hℓm

1 a1
ℓm +

1

B
Hℓm

2 aℓm +
√
2Kℓmgℓm

+

√
2ℓ (ℓ+ 1)

r

(
h
(e)ℓm
1 b1ℓm − ih

(e)ℓm
0 b0ℓm

)
+

(√
(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)

2
fℓm − ℓ (ℓ+ 1)√

2
gℓm

)
Gℓm .

(13)

Here, the mode perturbations hℓm1 , hℓm0 , . . . are functions of only (t, r), while a0
ℓm, aℓm, . . . are the ten tensor

spherical harmonics depending only on (θ, φ), whose explicit form can be found in Ref. [56] (or in page 17
of Ref. [57] and also in the Mathematica notebook).

Exercise. Check (at least for some of them) that the tensor spherical harmonics are defined to be
orthonormal on the 2-sphere(

rℓ
′m′
, sℓm

)
=

∫
S2

dΩ
(
rℓ

′m′
µν

)∗
sℓmλρ η

µλ ηνρ = δrsδℓℓ′δmm′ , (14)

where ηµν = diag
(
−1, 1, r2, r2 sin2 θ

)
. The energy-momentum tensor of the particle can also be expanded

in this basis

Tp =
∑
ℓ,m

A0
ℓma0

ℓm+A1
ℓma1

ℓm+Aℓmaℓm+B0
ℓmb0ℓm+Bℓmbℓm+Q0

ℓmc0ℓm+Qℓmcℓm+Dℓmdℓm+Fℓmfℓm+Gℓmgℓm .

For a given source the expansion coefficients can be obtained by projecting the energy-momentum tensor
on the respective spherical harmonic, e.g., A0

ℓm = (a0
ℓm,T ).
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2.3.1 Point-Particle Source

Exercise. As mentioned, the secondary is treated as a point-particle with energy-momentum tensor given
in Eq. (5), which in spherical coordinates can be rewritten as

Tµν
m = Tµν

p =

∫
dσ e−iσt mp

r2 sin θ

√
B

A

dtp
dτ

dxµ

dt

dxν

dt
× δ [r − rp(t)] δ [θ − θp(t)] δ [φ− φp(t)] .

At leading order in ϵ, the secondary follows geodesic motion in the background spacetime determined by
ĝµν . However, part of the orbital energy is dissipated via GWs and the scalar configuration. For small
enough ϵ (like in EMRIs), the energy dissipated over one orbit is much smaller than the orbital energy, and
the secondary evolves adiabatically over a succession of geodesics. In other words, the orbital phase evolves
on a timescale much shorter than the timescale over which quantities characterizing the orbit change, like
its energy and angular momentum. This is the basis of the two-timescale expansion in which much of the
self-force theory is built [4,58], and this adiabatic flow of geodesics corresponds to first-order self-force [10].
Here, we will assume (quasi-)circular motion (again, we had to start with the simplest case) for which

rp(t) = rp , θp(t) =
π

2
, φp(t) = Ωpt , (15)

where

Ωp =

√
A′

p

2rp
, Ap ≡ A(rp) , (16)

and the associated energy and angular momentum per unit rest mass are

Ep = Ap
dtp
dτ

=
Ap√

Ap − r2pΩ
2
p

, Lp = r2p
dφp

dτ
=

r2pΩp√
Ap − r2pΩ

2
p

. (17)

Exercise. Check that with the prescription above for the orbital motion, the source-term coefficients
appearing in Eq. (15) are

Aℓm = A(1)
ℓm = Bℓm = Qℓm = 0 , A0

ℓm = mp

√
AB

r2
Ep Y

⋆
ℓm

(π
2
, 0
)
δr δσ ,

B0
ℓm = imp

√
AB

r3
√

(n+ 1)
Lp ∂ϕY

⋆
ℓm

∣∣∣
(π/2,0)

δr δσ , Q0
ℓm = −mp

√
AB

r3
√
(n+ 1)

Lp ∂θY
⋆
ℓm

∣∣∣
(π/2,0)

δr δσ ,

Gℓm = mp

√
AB

r4
√
2

L2
p

Ep
Y ⋆
ℓm

(π
2
, 0
)
δr δσ , Dℓm = imp

√
AB

r4
√
2n(n+ 1)

L2
p

Ep
∂θϕY

⋆
ℓm

∣∣∣
(π/2,0)

δr δσ ,

Fℓm = mp

√
AB

r42
√

2n(n+ 1)

L2
p

Ep
(∂ϕϕ − ∂θθ)Y

⋆
ℓm

∣∣∣
(π/2,0)

δr δσ (18)

where
n = ℓ(ℓ+ 1)/2− 1 , δr = δ(r − rp) , δσ = δ(σ −mΩp) . (19)

You might immediately notice that for ℓ = 1, the coefficients Dℓm and Fℓm appear to diverge... We will look
into that more carefully in the next section.

2.3.2 Gauge-Invariance

GR is invariant under diffeomorphisms, which at the linear level can be translated in the gauge invariance

xµ → x′µ = xµ + ϵ ξµ , δgµν → δg′µν = δgµν − 2∇(µξν) , δΦ → δΨ′ = δΨ− ξµ∂µΨ̂ , (20)

where ξµ is the vector field generating the (infinitesimal) diffeomorphism; we can use its four components
to impose some coefficients in the expansion of δgµν to vanish. Note that ξµ can also be expanded in its
polar and axial components

ξµpolar =
∑
ℓ,m

(
− 1

A
ξℓmt , Bξℓmr , 0, 0

)
Yℓm +

ξℓmΩ
r2 sin θ

(0, 0, sin θ ∂θYℓm, ∂φYℓm) ,

ξµaxial =
∑
ℓ,m

ξℓmax
r sin θ

(0, 0, ∂φYℓm,− sin θ ∂θYℓm) ,
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where the ξℓmt , ξℓmr , ξℓmΩ , ξℓmax are only functions of (t, r).
Exercise. Check that in terms of the tensor spherical harmonics

2∇ξ =
(
2∂tξt −A′Bξr

)
a0 − i

√
2

(
∂rξt + ∂tξr −

A′

A
ξt

)
a1 +

(
2∂rξr +

B′

B
ξr

)
a

− i

√
2ℓ (ℓ+ 1)

r
(ξt + ∂tξΩ) b

0 +

√
2ℓ (ℓ+ 1)

r

(
∂rξΩ + ξr −

2

r
ξΩ

)
b+

√
2(ℓ+ 1)ℓ ∂tξaxc

0

− i
√

2(ℓ+ 1)ℓ

(
∂rξax −

ξax
r

)
c+ i

√
2 (ℓ+ 2) (ℓ+ 1) (ℓ− 1)

r
ξaxd+

√
2 (ℓ+ 2) (ℓ+ 1) ℓ (ℓ− 1)

r2
ξΩf

+

√
2

r2
(2rBξr − ℓ (ℓ+ 1) ξΩ) g , (21)

where the prime denotes a derivative with respect to r and, henceforth, we omit the (ℓ,m) indices to avoid
cluttering. If we pick ξµ judiciously, we can eliminate one component of the metric perturbations in the
axial sector and three in the polar sector.

We will adopt the Regge-Wheeler gauge, which is fixed by setting to zero all terms involving angular
derivatives of the highest order [59,60]

h2 = h
(e)
0 = h

(e)
1 = G = 0 . (22)

However, for ℓ ≤ 1 this choice does not completely fix the gauge, because some of the tensor spherical
harmonics are identically zero: more precisely, b0 = b = c0 = c = 0 for ℓ = 0, and d = f = 0 for ℓ ≤ 1.
This additional gauge freedom allows us to set one more perturbation function to 0. We choose

for ℓ = 1 , K = 0 . (23)

The ℓ ≤ 1 modes do not contribute to the radiative degrees of freedom of the gravitational field, and in
vacuum can be removed by a gauge transformation [60, 61]. However, in the presence of an environment
(even if just a point-particle), they cannot be completely removed and carry physical significance through
the matter sector. For our bosonic configuratons in particular, there will be dipolar scalar depletion.

2.3.3 Evolution Equations

We now have all the necessary machinery to tackle the linearized Einstein equations and obtain a set of
ordinary differential equations (ODEs) for the perturbations. We will focus on the polar sector, because it
is the one more technically involved and it dominates energy emission for (quasi-)circular motion (if you
understand the polar sector, I am sure you can work out the axial sector by yourself). Our goal is to
manipulate the perturbed Einstein-Klein Gordon system and find a system of 5 coupled ODEs that can be
written schematically as

dX⃗
dr

+ α̂X⃗ = S⃗ , (24)

where X⃗ = (H0, H1, K, δΨ+, δΨ−) and S⃗ are the source terms directly related to the point particle.
Exercise. Reproduce the next computations for the ℓ ≥ 2 modes

• The θφ-component of Einstein’s equations gives an algebraic relation between H2 and H0

H2 = H0 −
8
√
2π r2√

n(1 + n)
F (25)

• The tr-component of Einstein’s equations gives a 1st-order ODE for K

K ′ +

(
2

r
− A′

A

)
K

2
=
H0

r
+
i

σ

(
n

r2
+
B

r2
+
B′

r
+ 4πV0 −

4πω2

A
Ψ2

0 + 4πBΨ′2
0

)
H1

− 4πω

σr2
(
Ψ0 + rΨ′

0

)
(δΨ+ − δΨ−)−

4π

r
Ψ′

0 (δΨ+ + δΨ−) +
4π

r

ω

σ
Ψ0

(
δΨ′

+ − δΨ′
−
)
− 8

√
2π r√

n(1 + n)
F .

(26)
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• The tθ-component of Einstein’s equations gives a 1st-order ODE for H1

H ′
1+

(
B′

B
+
A′

A

)
H1

2
= − iσ

B
H0−

iσ

B
K+

iσ

B

8
√
2π r2√

n(1 + n)
+8πi

ω

rB
Ψ0 (δΨ+ − δΨ−)+F +

i

B

8πr√
1 + n

B0 .

(27)

• The rθ-component of Einstein’s equations gives a 1st-order ODE for H0

H ′
0 +

(
A′

A
− 1

r

)
H0 = −

(
2

r
− A′

A

)
K

2
− 4πω

σr2
(
Ψ0 + rΨ′

0

)
(δΨ+ − δΨ−)−

4π

r
Ψ′

0 (δΨ+ + δΨ−)

+ 4π
ω

rσ
Ψ0

(
δΨ′

+ − δΨ′
−
)
+

i

Ar2σ

(
A(n+B)− r2σ2 + rAB + 4πr2AV0 − 4πr2ω2Ψ2

0 + 4πr2ABΨ′2
0

)
H1

+
4
√
2π r2√

n(1 + n)

A′

A
F . (28)

We know that in GR the gravitational field has only two degrees of freedom, so the ODEs above cannot
be all independent. In fact, the rr-component of Einstein’s equations yields an algebraic relation
between H0, H1 and K which we could use to reduce the 3 ODEs above to only two (2 1st order
ODEs ⇒ 2 boundary conditions to impose ⇒ 2 degrees of freedom). In the Mathematica notebook,
I chose to work with the 3 equations above, because it is more direct to input in the inhomogeneous
part of the perturbed Klein-Gordon equation, which reads

δΨ′′
+ +

1

2

(
A′

A
+
B′

B

)
δΨ′

+ +
1

2r2AB

(
r
(
2r(σ + ω)2 −A′B

)
−A

(
4 + 4n+ 2r2U0 + rB′)) δΨ+ − rΨ0

B
δU

− rωσ

AB
Ψ0K + i

rω

B
Ψ0H

′
1 + rΨ′

0(H
′
0 −K ′) +

i

2A2B

(
Ψ0

(
rAB′ +B(4A− rA′)

)
+Ψ′

02r(σ + 2ω)AB
)
H1

+
1

2AB

(
−2rω (σ + ω)Ψ0 +

(
rAB′ +B

(
4A+ rA′))Ψ′

0 + 2rABΨ′′
0

)
H0 −mp

4
√
2πr3√

n(1 + n)
Ψ′

0F ′

+mp
4
√
2πr2√

n(1 + n)AB

(
rσωΨ0 −

(
6AB + rA′B + rA′B

)
Ψ′

0 − 2rABΨ′′
0

)
F . (29)

and the same equation for δΨ− but with ω → −ω.

Similar steps can be repeated for the ℓ = 1 mode, where we also impose K = 0 to fix the additional
gauge freedom. We leave this derivation for the notebook.

2.3.4 Zerilli master variable

At this stage, you are probably looking to the equations we have just written and thinking “uff...this looks
ugly...”, specially if you have already had contact with BH perturbation theory and are familiar with the
Zerilli master function [60,62,63].

Exercise. Check that for ℓ ≥ 2 and in a Schwarzschild background, where the background metric
functions are

A(r) = B(r) = 1− 2M

r
,

dr∗
dr

=
1√
AB

=
1

1− 2M/r
, (30)

the set of ODEs governing the gravitational perturbations we wrote above are equivalent to the single master
equation for the Zerilli function Z

dZ2

dr2∗
+
(
σ2 − VZ

)
Z = SZ , (31)

with the potential

VZ =
2 (1− 2M/r)

r3
9M3 + 3n2Mr2 + n2(1 + n)r3 + 9M2nr

(3M + σr)

2

, (32)

and the relation with the original variables being for example in Eqs. (17)-(19) of Ref. [64]. Here we report
only the relation for K because it will prove useful below

K =
dZ

dr∗
+

6M2 + n(1 + n)r2 + 3Mnr

r2 (3M + nr)
Z . (33)
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The Zerilli master function is a complex-valued gauge-invariant scalar which – as we will make explicit
below – controls the radiative degrees of freedom of the gravitational field. For the axial sector there is an
equivalent master wave equation for the Regge-Wheeler variable. This is definitely a much more elegant
solution to the vacuum problem than solving a system of coupled ODEs. Unfortunately, in the presence
of matter we do not have a notion of a master variable for the polar sector, although I personally believe
there should be one with a more complicated dependence with respect to the original variables. There is
ongoing work on this problem and hopefully in the near future we will have a master wave equation for
generic (spherically-symmetric) spacetimes.

2.3.5 Boundary Conditions

The only ingredient we are missing to solve our evolution equations is to impose boundary conditions at the
horizon and at infinity. For ℓ ≥ 2, all gravitational perturbations, which we denote by X, admit wave-like
solutions ingoing at the horizon and outgoing at large radius. Since our numerical solver does not extend
exactly to these radii, we impose a series expansion of the form [48,65]

X (r → ∞) = e+iσr∗
n∞∑
j=0

X
(j)
∞
rj

, X (r → 2M) = e−iσr∗

nH∑
j=0

X
(j)
H (r − 2M)j , (34)

where the coefficients X
(j)
∞,H are obtained by inserting these expansions in the homogeneous equations and

solving them at each order in (r − 2M) and 1/r, and set one of the 0-th coefficient to 1. In the notebook I
only went to the 1-st order coefficient (n∞ = nH = 1), but adding more terms will make the results more
precise. For ℓ = 1 it is enough to set all gravitational perturbations to 0 at the horizon. In fact, in vacuum
it is possible to find analytical solutions for them which in the Newtonian limit represent a fictitious force
due to the fact that our reference frame centered at the primary BH is a non-inertial one [60,63].

For the scalar perturbations, we also impose ingoing waves at the horizon and outgoing/regularity
conditions at large distances. Because the field has a mass, the series expansions become [48,65]

δΨ± (r → ∞) = e+ik±r∗r−ν+

n∞∑
j=0

δΨ
(j)
±,∞
rj

, δΨ± (r → 2M) = e−iω±r∗

nH∑
j=0

δΨ
(j)
±,H (r − 2M)j , (35)

where

ω± = σ ± ω , k± = sign(ω±)
√
ω2
± − µ2 , ν+ = −iMµ2/k± . (36)

We observe that only for frequencies ω± > µ there is emisson to infinity. For smaller frequencies, the energy
that is transferred from the binary to the environment is not sufficient to surpass the binding energy of the
scalar configuration and perturbations are confined, decaying exponentially at large distances.

2.3.6 Energy Fluxes and Orbital evolution

Once we solve the evolution equations we have all the necessary information to compute, up to order O(ϵ2),
the fluxes of gravitational and scalar energy carried away to infinity and absorbed by the central BH.
Generically, we can write them as

ĖS
L = −σL lim

r→rL
r2
∫
dΩTS

µν ξ
µ
(t) n

ν
L , (37)

where

S = {Ψ, g} , L = {H,∞} , σ{H,∞} = −,+ , ξ(t) =
∂

∂t
, (38)

with S being the sector (scalar or gravitational), L the location (horizon or infinity), ξ(t) the Killing vector
field associated to invariance under time translations and nνL a normal vector to the respective hypersurface.
For the scalar sector, the energy-momentum is the one in Eq. (4) and for the gravitational one we use
Isaacson’s effective energy-momentum tensor

T g
µν =

1

64π

〈
∇µδg

αβ∇νδgαβ

〉
. (39)
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Figure 1: Left Panel: Scalar (s)/gravitational (g) energy fluxes at infinity (∞)/horizon (H) as a function of the orbital
radius for a circular EMRI immersed in a spherical boson cloud with Mµ = 0.2; Right Panel : dipolar scalar flux for
larger orbital separation.

One can show that in a vacuum background (which is the one we are going to use in the next section), the
(time-averaged) gravitational flux can be written in terms of the Zerilli master function as [66]

Ėg
∞,H = lim

r→∞, 2M

1

64π

∑
ℓ,m

(ℓ+ 2)!

(ℓ− 2)!
σ2 |Z|2 . (40)

Using the relation in Eq. (33) (and its respective asymptotic limit for r → ∞ and r → 2M) we can rewrite
these as

Ėg
∞ = lim

r→∞

1

64π

∑
ℓ,m

(ℓ+ 2)!

(ℓ− 2)!
|K|2 , Ėg

H = lim
r→2M

1

64π

∑
ℓ,m

(ℓ+ 2)!

(ℓ− 2)!

∣∣∣∣ 4M K

ℓ(ℓ+ 1)− iσ4M

∣∣∣∣2 , (41)

Exercise. Using the asymptotic behavior dictated by the boundary conditions in Eqs. (35) show that
the (time-averaged) scalar fluxes can be written as

ĖΨ
∞ = lim

r→∞

∑
ℓ,m

ω+Re(k+) |δΨ+|2 , ĖΨ
H = lim

r→2M

∑
ℓ,m

ω2
+ |δΨ+|2 . (42)

To compute the orbital backreaction due to this emission of energy, we still need to account for the
depletion of the cloud itself. Under our assumptions (Im(ω) = 0 and no accretion onto the secondary), the
mass MΨ of the bosonic configuration is related to its Noether charge via (check Appendix of Ref. [48])

MΨ = ωQ , (43)

and therefore under an adiabatic evolution
ṀΨ = ωQ̇ . (44)

Exercise. Again using the asymptotic behavior of the scalar perturbations (and the fact that the Noether
current is conserved) show that

Q̇∞ = lim
r→∞

Re(k+) |δΨ+|2 , Q̇H = lim
r→2M

ω+ |δΨ+|2 . (45)

With this we can finally write a balance law for the adiabatic evolution of the orbital energy of the particle

dEp

dt
= −Ėg

∞ − Ėg
H − (ĖΨ

∞ − ωQ̇∞)− (ĖΨ
H − ωQ̇H) . (46)

3 Results

3.1 Spherical Bosonic Clouds

We have all the machinery prepared so let us apply it to a particular system. We are going to do it for
the simplest system we can think of which are spherical (ground-state) boson clouds [25]. These are (nod-
less) solutions for Einstein-Klein-Gordon system in the test-field limit, where even the backreaction of the
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background field Ψ̂ on the background geometry is neglected, and the metric reduces to Schwarzschild (30).
In this limit, the bosonic cloud has a structure similar to the hydrogen with α = Mµ playing the role of a
gravitational fine-structure constant [30]. For Mµ≪ 1 they also admit approximate analytical descriptions
in terms of Laguerre polynomials, and for the spherical setup in particular [25]

Ψ0(r) ≈
√

MΨ

πMBH
(MBHµ)

2

(
1− 2MBH

r

)−2iµMBH

e−MBHµ2r , ω = µ

[
1− 1

2
(Mµ)2

]
. (47)

To be fully consistent with the test-field approximation we will neglect all terms related with the scalar field
in the gravitational sector of the evolution equations. This is therefore equivalent to solving the vacuum
gravitational problem and then using those perturbations as a source of the Klein-Gordon equation. For
this it would therefore have been more practical to work with the Zerilli master function and reconstruct
the metric from it. However, with an eye on the generalization for when the test field approximation is not
possible, in the Mathematica notebook I still opted to work directly with the set of 5 ODEs.

I will leave details on the numerical implementation for the notebook, and simply jump to the numerical
results. In Fig. 1 (left panel), we compare the scalar energy flux carried by different multipoles with the
dominant quadrupolar gravitational flux as a function of the orbital radius of the secondar. My solver is
not efficient enough and so I was not able to probe very large radius for all the multipoles. However, it is
clear that at larger radius the scalar flux can compete with gravitational radiation. We only show values
for one value of µ, but we note there is no known an analytical scaling of fluxes with µ. This is more
challenging from the modelling perspective but should benefit the detection of these effects, since typically
such behavior helps breaking degeneracies in the parameter space.

In the right panel we show the dipolar fluxes for larger orbital separations, which is enough to discuss
the essential phenomenology of this system. We observe very distinctive features... let us try to understand
them.

3.2 A gravitational atom: analogy with Quantum Mechanics

We have discussed that superradiant clouds have a structure similar to the hydrogen atom, which has been
deeply explored in Refs [52–55]. We are now going to make use of this analogy to interpret our results.

A flux of energy arriving to infinity should correspond to scalar particles escaping the potential well of
the bosonic cloud and being ejected from it. In the hydrogen atom, this would correspond to its ionization
with the ejection of the electron (the fact that in the hydrogen atom we only have 1 particle is what makes
the system quantum). From the photoelectric effect we know that emission is not continuous with respect
to the intensity of the external radiation. Instead, light has to have frequency high enough the exceed
the binding energy of the electron to the nuclei. Our system follows the same trend. The energy being
imparted from the binary to the cloud has to exceed a certain treshold, mΩp > µ− ω, in order to activate
cloud ionization and emission of scalar radiation to infinity. That is why we see a discontinuity in Fig. 1

for the dipolar flux at rp ≈ 39.6M , which corresponds to a frequency Ωp =
√
M/r3p ≈ 4.01 × 10−3, while

µ−ω = 4×10−3. All modes will have this discontinuity at a radius corresponding to a frequency (µ−ω)/m,
so the larger the radius, the larger the mode that dominates scalar energy emission.

Moving to the flux at the horizon, we need to understand those peaks. Our cloud is in the fundamental
mode of a spherically symmetric configuration, i.e. the ℓ = m = 0 mode with the lowest energy. But there
are overtones corresponding to excited, higher-energy, spherically-symmetric states. If we were to consider
non-spherical clouds, then again in analogy with the hydrogen atom there will be an energy splitting between
modes with different angular momentum (labelled by ℓ, m) [25]

ωnℓm = µ

(
1− α2

2n2
− α4

8n4
− (3n− 2ℓi − 1)α4

n4(ℓi + 1/2)
+

2(a/M)miα
5

n3ℓi(ℓi + 1)(ℓi + 1/2)
+O(α6)

)
, (48)

where n = 1, 2, ... labels the overtone and we also included the hyperfine splitting (∆m ̸= 0) when the BH is
rotating (a ̸= 0) [55]. If the binary has orbital frequency equal to the energy difference between two states,
then it can induce resonant transitions between them. Those are precisely the peaks we are observing.
The binary is transferring energy to the cloud and inducing resonant transitions from the fundamental
n = 1, ℓ = m = 0 to higher overtones, which decay much faster than the fundamental one and are quickly
absorbed by the primary BH.
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Figure 2: Left Panel : Minimum mass MΨ which for a fixed µ yields 1 cycle of dephasing after 4 years of observation
that ends in a plunge, for two different EMRIs in prograde orbits immersed in a ℓ = m = 1 cloud (non-spherical, using
results from Ref. [48]) Right Panel : Marginalized posterior of the cloud parameters for an EMRI withM = 4×105M⊙,
ϵ = 10−4, observed with LISA 4 years prior to plunge (initial radius is rip = 19.945M , the spin of the central BH
is a/M = 0.6, and the signal-to-noise ratio is SNR = 50). Results are obtained using the FastEMRIWaveform
package [67–69] and a Fisher-Matrix formalism.

3.3 LISA Forecasts (work-in-progress)

What are then the consequences of our results to GW astronomy, in particular to LISA? The interaction of
the binary with the environment makes it lose energy at a different rate, which alters its trajectory. This
has direct impact on the phase of the GW signal emitted by the EMRI

ϕGW = 2

∫ Tf

Tf−Tobs

Ωp(t)dt = 2

∫ Tf

Tf−Tobs

dφ(t)

dt
dt = 2

∫ Tf

Tf−Tobs

(
dφ

dr

)(
dr

dE

)(
dE(t)

dt

)
dt , (49)

which we can measure very accurately. How large a dephasing needs to be to be measurable depends on
different aspects, namely the signal-to-noise ratio (how “loud” the GW signal is with respect to the noise
power), but a 1 cycle dephasing is a criteria often used for detectability (though not a sufficient one [70]).

In the left panel of Fig. 2 we show, for a given value ofMµ, the minimum mass of the bosonic cloud that
leads to 1 dephasing cycle after 4 years of observation – the duration of the LISA mission – that end in a
plunge, for two different EMRIs (for this I use the results for non-spherical clouds from Ref. [48] for prograde
orbits around a ℓ = m = 1 cloud). Considering superradiant clouds can be as massive as MΨ ∼ 0.1M , we
conclude there is an astrophysically relevant region of the parameter space that could lead to measurable
effects. For the system with larger mass ratio (ϵ = 10−4), the minimum mass is smaller because the initial
separation is larger, rip ∼ 20M vs rip ∼ 10M for the system with smaller mass-ratio (ϵ = 10−5). For larger
radius, the relative ratio between the scalar and gravitational flux is larger and hence the effect of the
cloud is more significant. Note that for these inspirals we do not hit any resonance, for which the orbital
backreaction becomes more involved, since the adiabaticity assumption breaks down [55].

To validate this expectation, we implemented our results in the state-of-the-art FastEMRIWaveform
package [67–69]. This a modular Python code to which the user can easily add corrections to the inspiral
in form of energy fluxes, as is the case of our EMRI in a bosonic cloud, and compute the respective waveform
assuming a Kerr background. Using this waveform, we performed parameter estimation for LISA using a
Fisher Matrix formalism [71–73] 1. We display results in the right panel of Fig. 2, for a ℓ = m = 1 cloud
with Mµ = 0.16 and MΨ = 0.05, and the EMRI with M = 4 × 105M⊙, ϵ = 10−4, a/M = 0.6 (spin at
which the superradiant instability saturates for this boson mass), initial radius rip = 19.945M , and a signal-
to-noise-ratio of SNR = 50. The parameters of the cloud can be recovered with relative error ≲ 10%, while
the recovery of the vacuum GR binary parameters is not deteriorated. The prospects for probing ultralight
fields with EMRIs are very exciting!

1The technicalities behind this would require 2 more hours to explain...
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4 Discussion

We have focused on the most simple system possible for the theory we considered: a circular inspiral around a
non-rotating BH surrounded by a spherical scalar cloud. We will end by discussing how to extend our results
to more complicated scenarios and what are the possible directions to pursue in this research programme.
All the topics below are certainly paper-worthy (some of them which have already been written or are in
the making process).
Non-spherical clouds: The first extension to consider are non-spherical clouds, which were studied in
Ref. [48]. They are better motivated astrophysically through superradiance, though we should note spherical
structures can be formed via other mechanisms, like accretion [44, 74, 75] or dynamical capture from a DM
halo [76]. For non-spherical clouds, the technical setup is almost the same as what we did, with the only
difference appearing in the non-homogeneous part (source term) of the Klein-Gordon equation. Essentially,
since the cloud is non-spherical, the source term with angular index {ℓs,ms} can induce the transition
between states {ℓi, mi} → {ℓf , mf}. Formally, this shows up as integrals of the type

Pℓi, ℓs, ℓf
mi,ms,mf =

∫
dΩY ∗

ℓfmf
YℓsmsYℓimi

. (50)

These integrals are only non-zero for particular combinations of {ℓf , ℓs, ℓi} and {mf , ms, mi} which define
a set of transition rules between states (very reminiscent of the Clebsch-Gordan coefficients/Wigner 3-j
symbols).
Rotating configurations: rotation of the central BH is also a necessary ingredient in superradiance.
For a rotating background vacuum spacetime, it is still possible to write a master wave equation for the
radiative degrees freedom, known as the Teukolsky equation [77]. However, the metric reconstruction that is
necessary to input in the source term of the Klein-Gordon equation becomes extremely more involved [78].
Another route is to consider a slowly-rotating approximation for the background, in which the structure
of the equations is more similar to what we have employed [79]. This strategy looks particularly useful to
handle superradiant clouds since when their growth saturates, at MΩH ∼ Mµ, the BH spin is far from
extremality [29].
Fuzzy DM Solitions: In the beginning of our discussion, we mentioned ultralight fields can also form
self-gravitating structures – boson stars or fuzzy soliton – which may describe the inner core of DM halos.
Even if parasited by a BH at their centre, these structures can be stable over timescales larger than the
age of the Universe [44]. It is therefore natural to also consider an EMRI evolving immersed in a fuzzy
DM soliton, a problem which has been studied in Ref. [49] (under numerous approximations). The main
technical complication in this is precisely that the self-gravity of the scalar configuration is non-negligible, so
the background spacetime cannot be approximated to be pure vacuum (i.e. Schwarzschild) and, a priori, the
gravitational sector does not decouple from the scalar one. In other words, one needs to solve the coupled
system of 5 ODEs at the same time. A thorough exploration of the parameter space for these systems
remains to be done.
Eccentric/Inclined orbits: Throughout our analysis we have assumed the EMRI exists but we have
ignored its past history and the impact the EMRI’s formation channel has on the configuration of the
binary (i.e. its eccentricity and inclination) and the state of the cloud. The most “standard” mechanism for
EMRI formation in vacuum is multi-body scattering in dense stellar clusters where one body is launched to
the central SMBH in an almost-plunging highly eccentric orbit (e ≳ 0.999), which then circularizes via GW
emission, and may enter the LISA band still at moderate eccentricity (e ≲ 0.7) and arbitrary inclination [1].
EMRI formation in non-vacuum astrophysical environments is still poorly understood, but recent results in
the context of accretion disks indicate the interaction of the small compact body with the disk assists EMRI
formation [80–82], albeit with residual eccentricity (but note these studies ignore important physics, namely
stochastic variations in the body-disk interactions [83]). What about for EMRIs forming in supperadiant
clouds? Ref. [55] has addressed this question and found two sounding phenomenological conclusions: first for
most initial orbital configurations, the passage(s) through resonance(s) depletes the cloud almost entirely by
the time the compact binary enters the frequency band of GW detectors. The cloud has the highest chance
of survival for retrograde orbits (with respect to the BH spin); in any case, resonances leave distinctive
features in eccentricity and inclination, with the authors reporting the existence of fixed points in the
trajectory evolution of these quantities (this has also been observed in GRMHD simulations of binaries in
accretion disks [84]). Extending our study to generic ones appears therefore of great relevance.
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Real/Vector fields: another possible extension is to consider other type of ultralight fields. For example,
we could have studied real scalar fields instead of complex ones. For the former, the energy-momentum
tensor is no longer time-independent – there is no equivalent of the Noether charge in Eq. (2) – and the
cloud will source GWs. The main technical difference would be then to consider this energy loss in the
balance law we wrote for the binary’s inspiral. Other possibility is to consider vector fields, for which the
superradiant instability is actually stronger. Here, we would need to substitute the Klein-Gordon equation
by the Proca equation for the ultralight vector field A

∇µ (∂
µAν − ∂νAµ) = µ2Aν , (51)

but the rest of the logical steps would be the same.
Environmental Self-Force : this is more like an entire career research programme rather than a self-
contained project. In the end, the problem that we are trying to solve is some kind of perturbative non-
vacuum two-body problem. In the extreme-mass-ratio limit, a proper solution to this would correspond to
a self-force theory that includes environmental effects. Let us remark that vacuum self-force is already an
extremely challenging and technical problem and there is a whole decade of necessary work to complete by
the time LISA flies for us to be able to do science with EMRIs. In any case, we may hypothesise how an
environmental self-force theory would look like. As we mentioned already, a key property of the self-force
program is that the orbital phase evolves on a timescale To ∼ M which is much faster than the inspiral
timescale dictated by GW emission Ti ∼ M2/mp, which allows to separate the phase from the orbital
evolution via a two-timescale expansion [4,58]. In the presence of an environment, there will corrections to
these timescales which for a compact binary should typically scale with the central energy density M2ρc of
the matter distribution. One could then envision some kind of three-timescale expansion for this problem.
This might sound crazy but it is not unheard of in Physics. A quick Google search led me to a three-timescale
approximate solution to the damped harmonic oscillator [85], to the Van der Pol oscillator, and to neutron
kinetics in nuclear reactors [86].

With this discussion I hope to have convinced you that there are multiple interesting open problems in
this research field which cover a broad range of techniques that go from formal/theoretical tasks to more
observational ones. Working in fundamental fields is really working in the intersection of strong-field gravity,
particle physics, and astrophysics and if some of these problems excite you there are many people around
the school/workshop you can talk to.
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