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where the gravitational interaction is both strong and dynamical?

What can we learn from LISA that we cannot using other instruments?
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Some fundamental physics questions

Is cosmic censorship preserved?

If so, are they described by the Kerr solution?
If not, do these compact objects have horizons?

Can we detect new fundamental fields, extra gravitational degrees of 
freedom, or polarizations?

In general relativity:
Because of the uniqueness properties of BHs then unfortunately we cannot learn 

anything more from about the physics of BHs from more precise merger observations

Can we constrain dark matter?

Are all black holes the same?

Does gravity respect Lorentz symmetry and parity invariance?

How do GWs propagate over cosmological scales?

…
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4D WEP
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Diffeomorphism 

invariance

=>

Lorentz-violating, Massive Gravity,…

Theory-Agnostic:

Parameterized post-Newtonian (PPN)

Parameterized Post-Einsteinian (PPE)

Parametrized ringdown (BH Spectroscopy)

Will & Nordtvedt, ApJ 177 (1972)

Yunes & Pretorius (0909.3328)

e.g., Berti, Cardoso & Starinets (0905.2975); Cardoso et al., (1901.01265); 
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EMRIs excellent to probe nature of massive compact objects
Measure the mass and current multipole moments of the Kerr spacetime, which are given by 
these simple and elegant expressions:

Mimicking Kerr’s multipole moments with a Newtonian analogue

Newtonian star with a density profile: Thin shell:

Constant radial profile:
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Bonga & Yang (2106.08342)

Mℓ=2n;m=0
Kerr ∝ (−1)n M ( J

M )
2n

Sℓ=2n+1;m=0
Kerr ∝ (−1)n M ( J

M )
2n+1

n = 0,1,…

Mℓ=2n;m=0
Newtonian ∝ ∫ drrℓ+2ρℓm (r)

Δ𝒬 ≡
M20 − MKerr

20

M3
≲ 10−4

e.g., Babak, Gair, Sesana, et al., (1703.09722)



Black holes beyond general relativity



Black holes beyond general relativity

S[g, φ, Ψ] = S0[g, φ] + αSc[g, φ] + Sm[g, φ, Ψ]
e.g., Maselli, Franchini, Gualtieri & Sotiriou, (2004.11895)

Metric tensor

Scalar field

Matter fields



Black holes beyond general relativity

S[g, φ, Ψ] = S0[g, φ] + αSc[g, φ] + Sm[g, φ, Ψ]
e.g., Maselli, Franchini, Gualtieri & Sotiriou, (2004.11895)

Metric tensor

Scalar field

Matter fields

S0 ∝ ∫ −g (R − ∂μφ∂μφ − μ2
s φ2)



Black holes beyond general relativity

S[g, φ, Ψ] = S0[g, φ] + αSc[g, φ] + Sm[g, φ, Ψ]
e.g., Maselli, Franchini, Gualtieri & Sotiriou, (2004.11895)

Metric tensor

Scalar field

Non-minimal couplingsMatter fields

S0 ∝ ∫ −g (R − ∂μφ∂μφ − μ2
s φ2)



Black holes beyond general relativity

S[g, φ, Ψ] = S0[g, φ] + αSc[g, φ] + Sm[g, φ, Ψ]
e.g., Maselli, Franchini, Gualtieri & Sotiriou, (2004.11895)

Metric tensor

Scalar field

Non-minimal couplingsMatter fields

S0 ∝ ∫ −g (R − ∂μφ∂μφ − μ2
s φ2) Action Matter fields



Black holes beyond general relativity

S[g, φ, Ψ] = S0[g, φ] + αSc[g, φ] + Sm[g, φ, Ψ]
e.g., Maselli, Franchini, Gualtieri & Sotiriou, (2004.11895)

Metric tensor

Scalar field

Non-minimal couplingsMatter fields

S0 ∝ ∫ −g (R − ∂μφ∂μφ − μ2
s φ2) Action Matter fields

Shift symmetric Gauss—Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)



Black holes beyond general relativity

S[g, φ, Ψ] = S0[g, φ] + αSc[g, φ] + Sm[g, φ, Ψ]
e.g., Maselli, Franchini, Gualtieri & Sotiriou, (2004.11895)

Metric tensor

Scalar field

Non-minimal couplingsMatter fields

S0 ∝ ∫ −g (R − ∂μφ∂μφ − μ2
s φ2) Action Matter fields

Sc[g, φ] ∝ αsGB ∫ −gφ𝒢

Massless  scalar field(μs = 0) 𝒢 = RμνρσRμνρσ − 4RμνRμν + R2

Shift symmetric Gauss—Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)



Black holes beyond general relativity

S[g, φ, Ψ] = S0[g, φ] + αSc[g, φ] + Sm[g, φ, Ψ]
e.g., Maselli, Franchini, Gualtieri & Sotiriou, (2004.11895)

Metric tensor

Scalar field

Non-minimal couplingsMatter fields

S0 ∝ ∫ −g (R − ∂μφ∂μφ − μ2
s φ2) Action Matter fields

Sc[g, φ] ∝ αsGB ∫ −gφ𝒢

Massless  scalar field(μs = 0) 𝒢 = RμνρσRμνρσ − 4RμνRμν + R2

Shift symmetric Gauss—Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)

Dynamical Chern—Simons gravity
e.g., Jackiw, & Pi (0308071)



Black holes beyond general relativity
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Massless  scalar field(μs = 0) 𝒢 = RμνρσRμνρσ − 4RμνRμν + R2

Sc[g, φ] ∝ αdCS ∫ −gφ𝒫

Massless  scalar field(μs = 0) 𝒫 = *RμνρσRμνρσ

Shift symmetric Gauss—Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)
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Which BHs give the best measurements of 
scalar charge? 

If  is the only relevant scale for the BH:M

α ≪ M2 C
M

≪ 1

Thus, these “large” BHs are effectively Kerr BHs.

C ∝ α∫ℋ
na𝒢a

For shift-symmetric scalars: e.g., Saravani & Sotiriou, (1903.02055)

𝒢 = ∇a𝒢a
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Outline: Three short stories

Development of full usable waveforms in beyond-GR theories or 
environments

Exploit the fundamental role played by different detectors across the 
gravitational and electromagnetic spectra

Beyond the adiabatic approximation:

Multiband or multi-messenger prospects:

A scalar (and potentially other) charge on the secondary will affect the 
waveform. 

New physics → New fields: scalar fields and BHs 
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Ωr; Ωθ; Ωϕ

mΩr + nΩθ + lΩϕ = 0The resonance condition:

Carter, Phys. Rev. 174 (1968); Schmidt (0202090)

e.g., Arnold, Kozlov, & Neishtadt, 
Mathematical Aspects of Classical 

and Celestial Mechanics (1997)

mΩr + nΩθ >
K (ϵ)

( m + n )3

Under a perturbation: 

(e.g., accretion disk, third body, non-GR)

A. C-A, et al (1804.04002)
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Δj2 = 2π
ω2

ω1



A possible observational detection of non-Kerr black holes 
From the trajectory



A possible observational detection of non-Kerr black holes 

Lukes-Gerakopoulos, Apostolatos & Contopoulos (0906.0093)

From the trajectory



A possible observational detection of non-Kerr black holes 

Lukes-Gerakopoulos, Apostolatos & Contopoulos (0906.0093)

From the trajectory



A possible observational detection of non-Kerr black holes 

Lukes-Gerakopoulos, Apostolatos & Contopoulos (0906.0093)

From the trajectory From the gravitational waves



A possible observational detection of non-Kerr black holes 

Lukes-Gerakopoulos, Apostolatos & Contopoulos (0906.0093)

From the trajectory From the gravitational waves
Destounis, Suvorov & Kokkotas (2103.05643)



A possible observational detection of non-Kerr black holes 

Lukes-Gerakopoulos, Apostolatos & Contopoulos (0906.0093)

From the trajectory From the gravitational waves
Destounis, Suvorov & Kokkotas (2103.05643)



A possible observational detection of non-Kerr black holes 

Lukes-Gerakopoulos, Apostolatos & Contopoulos (0906.0093)

From the trajectory From the gravitational waves
Destounis, Suvorov & Kokkotas (2103.05643)

Manko & Novikov, CQG. 9 2477 (1992)

Johannsen (1501.02809) Destounis, Suvorov & Kokkotas (2009.00028)



A possible observational detection of non-Kerr black holes 

Lukes-Gerakopoulos, Apostolatos & Contopoulos (0906.0093)

From the trajectory From the gravitational waves
Destounis, Suvorov & Kokkotas (2103.05643)

Linearized Einsteinian adiabatic fluxes: Manko & Novikov, CQG. 9 2477 (1992)

Johannsen (1501.02809) Destounis, Suvorov & Kokkotas (2009.00028)
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IC: a=0.8, p=4.66 e=0.7 m/M=10-6

IC: a=0.78, p=4.88 e=0.7 m/M=1.08x10-6

Now, let us add a “kick” to the flux!
e.g., see Speri & Gair (2103.06306) for a study and model within GR around resonances 


see Pan, Yang, Bernard, et al., (2306.06576) for an introduction of a resonance effective Hamiltonian 

   

ds2 = ds2
Kerr𝒪 (a2)

ds2 = ds2
Kerr
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Why a kick? Resonant effects within GR

Flanagan & Hinderer (1009.4923)

Berry, Cole, Cañizares, et al., (1608.08951)

While detection may only result in a 
small percentage of loss, it plays a 
crucial role in accurately estimating 

parameters!
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Ψ (f) = ΨGR (f) (1 + βu2n−5)

Considering the parameterized post-Einsteinian (ppE) 
formalism:


Yunes & Pretorius (0909.3328)

Carson & Yagi (1905.13155)

see, also, Perkins, Yunes & Berti (2010.09010) for a comprehensive study and scenarios
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Multi-band gravitational wave tests of general 
relativity: dCS as an example

Analytical solutions valid only in the small 
coupling approximation

ζ ≡
16πα2

M4
→ ζ ≪ 1

Carson & Yagi (1905.13155), see also, e.g.,  Gnocchi, Maselli, Abdelsalhin, et al., (1905.13460)

Nair, Perkins, Silva & Yunes (1905.00870)

Silva, Holgado, ACA & Yunes (2004.01253)

I+Love+Q with NICER & LVC data: α1/2
dCS ≤ 8.5 km



Multi-band EM signature in massive black hole 
binaries: strong thermal X-ray emission until 1-2 days prior to the merger



Multi-band EM signature in massive black hole 
binaries: strong thermal X-ray emission until 1-2 days prior to the merger

Major Krauth, Davelaar, Haiman, et. al., (2304.02575)



Multi-band EM signature in massive black hole 
binaries: strong thermal X-ray emission until 1-2 days prior to the merger

Major Krauth, Davelaar, Haiman, et. al., (2304.02575)

Major Krauth, Davelaar, Haiman, et. al., (2304.02575)



Discussion

cardenas-avendano@princeton.edu

LISA design is changing. Most predictions and tests might be 
revisited once we know the configuration LISA will fly with.  

We cannot make a list of the truly unexpected. However, there 
are sources that the community have speculated about that 
would be quite interesting and revolutionary, if discovered. 

I particularly thank T. Baker, E. Berti, R. Brito, 
V. Cardoso, P. Pani, C. Sopuerta & T. Sotiriou 
for their input to write this talk. 

It is crucial to match the increased level of modeling precision 
with the expected level of observation precision.

Breaking degeneracies with astrophysics, environmental effects, 
etc., also requires precise modeling. We can also think about 
synergies for multi band and multi-messenger observations
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