Tests of general relativity from the working group perspective

Alejandro Cárdenas-Avendaño
Princeton Gravity Initiative, Princeton University

Fundamental physics in extreme gravitational regimes

Fundamental physics in extreme gravitational regimes

What is the fundamental physics at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical?

Fundamental physics in extreme gravitational regimes

What is the fundamental physics at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical?

In general relativity:

There is no universal criteria for when non-linear effects become significant enough to qualitatively change the solutions.

Fundamental physics in extreme gravitational regimes

What is the fundamental physics at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical?

In general relativity:

There is no universal criteria for when non-linear effects become significant enough to qualitatively change the solutions.

What can we learn from LISA that we cannot using other instruments?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If not, do these compact objects have horizons?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If so, are they described by the Kerr solution? If not, do these compact objects have horizons?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If so, are they described by the Kerr solution?
If not, do these compact objects have horizons?
Does gravity respect Lorentz symmetry and parity invariance?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If so, are they described by the Kerr solution?
If not, do these compact objects have horizons?
Does gravity respect Lorentz symmetry and parity invariance?
Is cosmic censorship preserved?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If so, are they described by the Kerr solution? If not, do these compact objects have horizons?

Does gravity respect Lorentz symmetry and parity invariance?
Can we constrain dark matter?
Is cosmic censorship preserved?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If so, are they described by the Kerr solution?
If not, do these compact objects have horizons?
Does gravity respect Lorentz symmetry and parity invariance?
Can we constrain dark matter?
Is cosmic censorship preserved?
How do GWs propagate over cosmological scales?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If so, are they described by the Kerr solution?
If not, do these compact objects have horizons?

Does gravity respect Lorentz symmetry and parity invariance?
Can we constrain dark matter?
Is cosmic censorship preserved?
How do GWs propagate over cosmological scales?
Can we detect new fundamental fields, extra gravitational degrees of freedom, or polarizations?

In general relativity:

Because of the uniqueness properties of BHs then unfortunately we cannot learn anything more from about the physics of BHs from more precise merger observations

Some fundamental physics questions

Are all black holes the same?
If so, are they described by the Kerr solution?
If not, do these compact objects have horizons?

Does gravity respect Lorentz symmetry and parity invariance?
Can we constrain dark matter?
Is cosmic censorship preserved?
How do GWs propagate over cosmological scales?
Can we detect new fundamental fields, extra gravitational degrees of freedom, or polarizations?

Sectors for tests of general relativity

Sectors for tests of general relativity

$d f$
$d t$

Sectors for tests of general relativity

$$
\frac{d f}{d t}=\underbrace{\left(\frac{d E}{d f}\right)^{-1}}_{\text {conservative }}
$$

Sectors for tests of general relativity

dissipative
$d E$
$d t$

Sectors for tests of general relativity

Sectors for tests of general relativity
dissipative
$d E$
$d t$

Sectors for tests of general relativity

dissipative

Propagation effects!
conservative
Energy flux density carried by the GWs:

$$
\frac{d E}{d A d t}=\frac{c^{3}}{16 \pi G}\left\langle\left(\frac{d h_{+}}{d t}\right)^{2}+\left(\frac{d h_{\mathrm{x}}}{d t}\right)^{2}\right\rangle
$$

Sectors for tests of general relativity

dissipative

Propagation effects!
conservative
Energy flux density carried by the GWs:

$$
\frac{d E}{d A d t}=\frac{c^{3}}{16 \pi G}:\left\langle\left(\frac{d h_{+}}{d t}\right)^{2}+\left(\frac{d h_{\mathrm{x}}}{d t}\right)^{2}\right\rangle
$$

Sectors for tests of general relativity
dissipative

Propagation effects!

conservative

Energy flux density carried by the GWs:

$$
\left.\frac{d E}{d A d t}=\frac{c^{3}}{16 \pi G}:\left(\frac{d h_{+}}{d t}\right)^{2}+\left(\frac{d h_{\times}}{d t}\right)^{2}\right\rangle \quad \frac{c^{3}}{G} \sim 10^{36} \mathrm{~J} \cdot \mathrm{~s} / \mathrm{m}^{2}
$$

Tests of general relativity

Tests of general relativity

Theory-Specific:

Tests of general relativity

e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Theory-Specific:

Tests of general relativity

No extra fields*
e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Diffeomorphism invariance

Theory-Specific:

Tests of general relativity

Noextra fields*
e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Theory-Specific:

e.g., f(R), Quadratic gravity,

Tests of general relativity

Noextra fields*
e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Theory-Specific:

e.g., $f(R)$, Quadratic gravity,

Lorentz-violating, Massive Gravity, ...
*There are ways to circumvent Lovelock's theorem without adding new fields
e.g., Flanagan (0308111); Pani, Sotiriou \& Vernieri (1306. 1835);

Tests of general relativity

Noextra fields*
e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Theory-Agnostic:

Theory-Specific:

> e.g., f(R), Quadratic gravity,
> Lorentz-violating, Massive Gravity,...

Tests of general relativity

Noextra fields*
e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Theory-Agnostic:
Will \& Nordtvedt, ApJ 177 (1972)
Parameterized post-Newtonian (PPN)
*There are ways to circumvent Lovelock's theorem without adding new fields
e.g., Flanagan (0308111); Pani, Sotiriou \& Vernieri (1306. 1835);

Tests of general relativity

Noextra fields*
e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Theory-Specific:

e.g., $f(R)$, Quadratic gravity,

Lorentz-violating, Massive Gravity, ...

Theory-Agnostic:
Will \& Nordtvedt, ApJ 177 (1972)
Parameterized post-Newtonian (PPN)

Yunes \& Pretorius (0909.3328)
Parameterized Post-Einsteinian (PPE)
*There are ways to circumvent Lovelock's theorem without adding new fields
e.g., Flanagan (0308111); Pani, Sotiriou \& Vernieri (1306.1835);

Tests of general relativity

Noextra fields*
e.g., Berti, et al., CQG Topical Review (2015) Yagi \& Stein, CQG Focus Issue (2016)

Theory-Specific:

e.g., f(R), Quadratic gravity,

Lorentz-violating, Massive Gravity, ...
*There are ways to circumvent Lovelock's theorem without adding new fields
e.g., Flanagan (0308111); Pani, Sotiriou \& Vernieri (1306. 1835);

Theory-Agnostic:
Will \& Nordtvedt, ApJ 177 (1972)
Parameterized post-Newtonian (PPN)

Yunes \& Pretorius (0909.3328)
Parameterized Post-Einsteinian (PPE)
e.g., Berti, Cardoso \& Starinets (0905.2975); Cardoso et al., (1901.01265)

Parametrized ringdown (вн Spectroscopy)

Outline: Three short stories

Outline: Three short stories

New physics \rightarrow New fields: scalar fields and BHs

A scalar (and potentially other) charge on the secondary will affect the waveform.

Outline: Three short stories

New physics \rightarrow New fields: scalar fields and BHs

A scalar (and potentially other) charge on the secondary will affect the waveform.

Beyond the adiabatic approximation:

Development of full usable waveforms in beyond-GR theories or environments

Outline: Three short stories

New physics \rightarrow New fields: scalar fields and BHs

A scalar (and potentially other) charge on the secondary will affect the waveform.

Beyond the adiabatic approximation:

Development of full usable waveforms in beyond-GR theories or environments

Multiband or multi-messenger prospects:

Exploit the fundamental role played by different detectors across the gravitational and electromagnetic spectra

Outline: Three short stories

New physics \rightarrow New fields: scalar fields and BHs

A scalar (and potentially other) charge on the secondary will affect the waveform.

Beyond the adiabatic approximation:
Develonment of full usable waveforms in beyond-GR theories or environments

Multiband or multi-messenger prospects:

Exploit the fundamental role played by different detectors across the gravitational and electromagnetic spectra

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:

$$
\begin{gathered}
M_{\text {Kerr }}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} S_{\mathrm{Kerr}}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \\
n=0,1, \ldots
\end{gathered}
$$

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:
e.g., Babak, Gair, Sesana, et al., (1703.09722)

$$
M_{\text {Kerr }}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} \quad S_{\text {Kerr }}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \quad \Delta Q \equiv \frac{M_{20}-M_{20}^{\text {Kerr }}}{M^{3}} \lesssim 10^{-4}
$$

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:
e.g., Babak, Gair, Sesana, et al., (1703.09722)

$$
\begin{gathered}
M_{\text {Kerr }}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} S_{\text {Kerr }}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \quad \Delta Q \equiv \frac{M_{20}-M_{20}^{\text {Kerr }}}{M^{3}} \lesssim 10^{-4} \\
n=0,1, \ldots
\end{gathered}
$$

Mimicking Kerr's multipole moments with a Newtonian analogue

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:

$$
\begin{gathered}
M_{\operatorname{Kerr}}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} S_{\text {Kerr }}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \quad \Delta \mathbb{Q} \equiv \frac{M_{20}-M_{20}^{\text {Kerr }}}{M^{3}} \lesssim 10^{-4} \\
n=0,1, \ldots
\end{gathered}
$$

e.g., Babak, Gair, Sesana, et al., (1703.09722)

Mimicking Kerr's multipole moments with a Newtonian analogue
Newtonian star with a density profile:

$$
\rho(r, \theta, \phi)=\sum_{\ell, m} \rho_{\ell m}(r) Y_{\ell m}(\theta, \phi)
$$

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:

$$
\begin{gathered}
M_{\mathrm{Kerr}}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} S_{\mathrm{Kerr}}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \\
n=0,1, \ldots
\end{gathered}
$$

e.g., Babak, Gair, Sesana, et al., (1703.09722)

Mimicking Kerr's multipole moments with a Newtonian analogue
Newtonian star with a density profile:

$$
\rho(r, \theta, \phi)=\sum_{\ell, m} \rho_{\ell m}(r) Y_{\ell m}(\theta, \phi)
$$

Newtonian mass multipoles:

$$
M^{\ell=2 n ; m=0}{ }^{\ell} \text { Newtonian } \propto \int d r r^{\ell+2} \rho_{\ell m}(r)
$$

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:
e.g., Babak, Gair, Sesana, et al., (1703.09722)

$$
\begin{gathered}
M_{\text {Kerr }}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} S_{\text {Kerr }}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \quad \Delta Q \equiv \frac{M_{20}-M_{20}^{\text {Kerr }}}{M^{3}} \lesssim 10^{-4} \\
n=0,1, \ldots
\end{gathered}
$$

Mimicking Kerr's multipole moments with a Newtonian analogue
Newtonian star with a density profile:

$$
\text { Thin shell: } \quad \rho_{\ell 0}(r=R) Y_{\ell 0}(\theta=0, \phi)=i^{2 \ell+1} \frac{a}{4 \pi}\left(\frac{a}{R}\right)^{\ell}
$$

$$
\rho(r, \theta, \phi)=\sum_{\ell, m} \rho_{\ell m}(r) Y_{\ell m}(\theta, \phi)
$$

Newtonian mass multipoles:

$$
\begin{aligned}
& M^{\ell=2 n ; m=0}{ }^{\text {Newtonian }} \propto \int d r r^{\ell+2} \rho_{\ell m}(r) \\
& \text { Newt }
\end{aligned}
$$

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:
e.g., Babak, Gair, Sesana, et al., (1703.09722)

$$
\begin{gathered}
M_{\mathrm{Kerr}}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} S_{\mathrm{Kerr}}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \quad \Delta \mathbb{Q} \equiv \frac{M_{20}-M_{20}^{\mathrm{Kerr}}}{M^{3}} \lesssim 10^{-4} \\
n=0,1, \ldots
\end{gathered}
$$

Mimicking Kerr's multipole moments with a Newtonian analogue
Bonga \& Yang (2106.08342)

Newtonian star with a density profile:

$$
\rho(r, \theta, \phi)=\sum_{\ell, m} \rho_{\ell m}(r) Y_{\ell m}(\theta, \phi)
$$

Newtonian mass multipoles:

$$
M_{\text {Newtonian }}^{\ell=2 n ; m=0} \propto \int d r r^{\ell+2} \rho_{\ell m}(r)
$$

$$
\text { Thin shell: } \quad \rho_{\ell 0}(r=R) Y_{\ell 0}(\theta=0, \phi)=i^{\ell} \frac{2 \ell+1}{4 \pi}\left(\frac{a}{R}\right)^{\ell}
$$

$$
\text { Constant radial profile: } \quad \rho_{\ell m}=\beta_{\ell} \delta_{m, 0} \frac{M}{R^{3}}\left(\frac{a}{R}\right)^{\ell}
$$

EMRIs excellent to probe nature of massive compact objects

Measure the mass and current multipole moments of the Kerr spacetime, which are given by these simple and elegant expressions:
e.g., Babak, Gair, Sesana, et al., (1703.09722)

$$
\begin{gathered}
M_{\text {Kerr }}^{\ell=2 n ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n} S_{\text {Kerr }}^{\ell=2 n+1 ; m=0} \propto(-1)^{n} M\left(\frac{J}{M}\right)^{2 n+1} \quad \Delta Q \equiv \frac{M_{20}-M_{20}^{\text {Kerr }}}{M^{3}} \lesssim 10^{-4} \\
n=0,1, \ldots
\end{gathered}
$$

Mimicking Kerr's multipole moments with a Newtonian analogue

> Bonga \& Yang (2106.08342)

Newtonian star with a density profile:

$$
\rho(r, \theta, \phi)=\sum_{\ell, m} \rho_{\ell m}(r) Y_{\ell m}(\theta, \phi)
$$

Newtonian mass multipoles:

Black holes beyond general relativity

Black holes beyond general relativity

Metric tenso
 Matter fields
 e.g., Maselli, Franchini, Gualtieri \& Sotiriou, (2004.11895)
 $S[\mathbf{g}, \varphi, \Psi]=S_{0}[\mathbf{g}, \varphi]+\alpha S_{c}[\mathbf{g}, \varphi]+S_{\mathrm{m}}[\mathbf{g}, \varphi, \Psi]$
 Scalar field

Black holes beyond general relativity

Metric tensor Matter fields

Black holes beyond general relativity

Black holes beyond general relativity

Scalar field

$$
S_{0} \propto \int \sqrt{-g}\left(R-\partial_{\mu} \varphi \partial^{\mu} \varphi-\mu_{\mathrm{s}}^{2} \varphi^{2}\right)
$$

Black holes beyond general relativity

Shift symmetric Gauss-Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)

Black holes beyond general relativity

Shift symmetric Gauss-Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)

Massless $\left(\mu_{\mathrm{s}}=0\right)$ scalar field

$$
\mathscr{G}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-4 R^{\mu \nu} R_{\mu \nu}+R^{2}
$$

$S_{c}[\mathbf{g}, \varphi] \propto \alpha_{\mathrm{SGB}} \int \sqrt{-\mathrm{g}} \varphi \mathscr{G}$

Black holes beyond general relativity

Shift symmetric Gauss-Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)

Massless $\left(\mu_{\mathrm{s}}=0\right)$ scalar field
$S_{c}[\mathbf{g}, \varphi] \propto \alpha_{\mathrm{SGB}} \int \sqrt{-g} \varphi \mathscr{G}$

Dynamical Chern-Simons gravity
e.g., Jackiw, \& Pi (0308071)

Black holes beyond general relativity

Shift symmetric Gauss-Bonnet gravity
e.g., Kanti, Mavromatos, Rizos, et al. (9511071)

$$
\text { Massless }\left(\mu_{\mathrm{s}}=0\right) \text { scalar field }
$$

$S_{c}[\mathrm{~g}, \varphi] \propto \alpha_{\mathrm{SGB}} \int \sqrt{-g} \varphi \mathscr{G}$

Dynamical Chern-Simons gravity
e.g., Jackiw, \& Pi (0308071)

Massless $\left(\mu_{\mathrm{s}}=0\right)$ scalar field

$$
\mathscr{P}=* R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}
$$

$$
S_{c}[\mathbf{g}, \varphi] \propto \alpha_{\mathrm{dCS}} \int \sqrt{-g} \varphi \mathscr{P}
$$

Which BHs give the best measurements of scalar charge?

For shift-symmetric scalars:

Which BHs give the best measurements of scalar charge?

For shift-symmetric scalars:

$$
C \propto \alpha \int_{\mathscr{H}} n_{a} \mathscr{G}^{a} \quad \mathscr{G}=\nabla_{a} \mathscr{G}^{a}
$$

Which BHs give the best measurements of scalar charge?

For shift-symmetric scalars:

If M is the only relevant scale for the BH :

Which BHs give the best measurements of scalar charge?

For shift-symmetric scalars:

$$
C \propto \alpha \int_{\mathscr{H}} n_{a} \mathscr{G}^{a} \quad \mathscr{G}=\nabla_{a} \mathscr{G}^{a}
$$

If M is the only relevant scale for the BH :

$$
\alpha \ll M^{2} \longrightarrow \frac{C}{M} \ll 1
$$

Which BHs give the best measurements of scalar charge?

For shift-symmetric scalars:

$$
C \propto \alpha \int_{\mathscr{H}} n_{a} \mathscr{G}^{a} \quad \mathscr{G}=\nabla_{a} \mathscr{G}^{a}
$$

If M is the only relevant scale for the BH :

$$
\alpha \ll M^{2} \longrightarrow \frac{c}{M} \ll 1
$$

Thus, these "large" BHs are effectively Kerr BHs.

Difference in the GW phase evolution of EMRIs with and without scalar charge

Difference in the GW phase evolution of EMRIs with and without scalar charge

The field equations become

Difference in the GW phase evolution of EMRIs with and without scalar charge

The field equations become
$G^{\alpha \beta}=8 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} \frac{d y_{p}^{\alpha}}{d \lambda} \frac{d y_{p}^{\beta}}{d \lambda} d \lambda$

Difference in the GW phase evolution of EMRIs with and without scalar charge

The field equations become

$$
\begin{aligned}
G^{\alpha \beta}=8 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} \frac{d y_{p}^{\alpha}}{d \lambda} \frac{d y_{p}^{\beta}}{d \lambda} d \lambda \\
\square \varphi=-4 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} d \lambda
\end{aligned}
$$

Difference in the GW phase evolution of EMRIs with and without scalar charge

The field equations become

$$
\begin{aligned}
& G^{\alpha \beta}=8 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} \frac{d y_{p}^{\alpha}}{d \lambda} \frac{d y_{p}^{\beta}}{d \lambda} d \lambda \\
& \square \varphi=-4 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} d \lambda
\end{aligned}
$$

Difference in the GW phase evolution of EMRIs with and without scalar charge
 Maselli, Franchini, Gualtieri, et al., (2106.11325)

The field equations become

$$
\begin{aligned}
G^{\alpha \beta}=8 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} \frac{d y_{p}^{\alpha}}{d \lambda} \frac{d y_{p}^{\beta}}{d \lambda} d \lambda \\
\square \varphi=-4 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} d \lambda
\end{aligned}
$$

Difference in the GW phase evolution of EMRIs with and without scalar charge
 Maselli, Franchini, Gualtieri, et al., (2106.11325)

The field equations become

$$
\begin{aligned}
G^{\alpha \beta}=8 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} \frac{d y_{p}^{\alpha}}{d \lambda} \frac{d y_{p}^{\beta}}{d \lambda} d \lambda \\
\square \varphi=-4 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} d \lambda
\end{aligned}
$$

EMRIs with LISA can potentially probe the charges (up to $d \sim 10^{-2}$) carried by the secondary!

Difference in the GW phase evolution of EMRIs with and without scalar charge
 Maselli, Franchini, Gualtieri, et al., (2106.11325)

The field equations become

$$
\begin{gathered}
G^{\alpha \beta}=8 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} \frac{d y_{p}^{\alpha}}{d \lambda} \frac{d y_{p}^{\beta}}{d \lambda} d \lambda \\
\square \varphi=-4 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} d \lambda \\
d_{\mathrm{sGB}}=\frac{2 \alpha_{\mathrm{sGB}}}{m_{p}^{2}}+\frac{73}{60} \frac{\alpha_{\mathrm{SGB}}^{3}}{m_{p}^{6}}
\end{gathered}
$$

EMRIs with LISA can potentially probe the charges (up to $d \sim 10^{-2}$) carried by the secondary!

Difference in the GW phase evolution of EMRIs with and without scalar charge

The field equations become

$$
G^{\alpha \beta}=8 \pi m_{p} \int \frac{\delta^{(4)}\left[x-y_{p}(\lambda)\right]}{\sqrt{-g}} \frac{d y_{p}^{\alpha}}{d \lambda} \frac{d y_{p}^{\beta}}{d \lambda} d \lambda
$$

$$
\square \varphi=-4 \pi m_{p} \int^{\delta^{(4)}\left[x-y_{p}(\lambda)\right]} \text { Franchini, Gualtieri, etal, (2106. 11325) } \sqrt{-g} d \lambda
$$

EMRIs with LISA can potentially probe the charges (up to $d \sim 10^{-2}$) carried by the secondary!

Outline: Three short stories

New physics \rightarrow New fields: scalar fields and BHs
A scalar (and potentially other) charge on the secondary will affect the waveform.

Beyond the adiabatic approximation:
Development of full usable waveforms in beyond-GR theories or environments

Multiband or multi-messenger prospects:

Exploit the fundamentail role playedi by different detectors across the gravitational and electromagnetic spectra

EMRIs: Geodesics and Orbital Resonances

EMRIs: Geodesics and Orbital Resonances

EMRIs: Geodesics and Orbital Resonances

Carter, Phys. Rev. 174 (1968); Schmidt (0202090)
$\Omega_{r} ; \Omega_{\theta} ; \Omega_{\phi}$

EMRIs: Geodesics and Orbital Resonances

Carter, Phys. Rev. 174 (1968); Schmidt (0202090)
$\Omega_{r} ; \Omega_{\theta} ; \Omega_{\phi}$

EMRIs: Geodesics and Orbital Resonances

The resonance condition: $m \Omega_{r}+n \Omega_{\theta}+l \Omega_{\phi}=0$

Carter, Phys. Rev. 174 (1968); Schmidt (0202090)
$\Omega_{r} ; \Omega_{\theta} ; \Omega_{\phi}$

EMRIs: Geodesics and Orbital Resonances

The resonance condition: $m \Omega_{r}+n \Omega_{\theta}+l \Omega_{\phi}=0$

Carter, Phys. Rev. 174 (1968); Schmidt (0202090)
$\Omega_{r} ; \Omega_{\theta} ; \Omega_{\phi}$

Under a perturbation:
(e.g., accretion disk, third body, non-GR)

$$
\left|m \Omega_{r}+n \Omega_{\theta}\right|>\frac{K(\epsilon)}{(|m|+|n|)^{3}}
$$

e.g., Arnold, Kozlov, \& Neishtadt, Mathematical Aspects of Classical

A possible observational detection of non-Kerr black holes
From the trajectory

A possible observational detection of non-Kerr black holes

From the trajectory

A possible observational detection of non-Kerr black holes

From the trajectory

A possible observational detection of non-Kerr black holes

From the trajectory
From the gravitational waves

A possible observational detection of non-Kerr black holes

From the trajectory
From the gravitational waves

A possible observational detection of non-Kerr black holes

From the trajectory
From the gravitational waves

A possible observational detection of non-Kerr black holes

From the trajectory
From the gravitational waves

A possible observational detection of non-Kerr black holes

From the trajectory
From the gravitational waves

Linearized Einsteinian adiabatic fluxes:

$$
E(t)=E(0)+\left.\frac{d E}{d t}\right|_{0} ^{t} \quad L_{z}(t)=L_{z}(0)+\left.\frac{d L_{z}}{d t}\right|_{0} t
$$

Can we model this behavior by just changing the fluxes?

Can we model this behavior by just changing the fluxes?

$$
d s^{2}=d s_{\text {Kerr }}^{2} \mathcal{O}\left(a^{2}\right)
$$

Can we model this behavior by just changing the fluxes?

Can we model this behavior by just changing the fluxes?

IC: $a=0.8, p=4.66 e=0.7 \mathrm{~m} / \mathrm{M}=10^{-6}$

Can we model this behavior by just changing the fluxes?

IC: $a=0.8, p=4.66 e=0.7 \mathrm{~m} / \mathrm{M}=10^{-6}$

Can we model this behavior by just changing the fluxes?

IC: $a=0.8, p=4.66 e=0.7 \mathrm{~m} / \mathrm{M}=10^{-6}$

$$
F F\left(h_{1}, h_{2}\right)=\frac{\left\langle h_{1} \mid h_{2}\right\rangle}{\sqrt{\left\langle h_{1} \mid h_{1}\right\rangle\left\langle h_{2} \mid h_{2}\right\rangle}}
$$

Can we model this behavior by just changing the fluxes?

IC: $a=0.8, p=4.66 e=0.7 \mathrm{~m} / \mathrm{M}=10^{-6}$

IC: $a=0.78, p=4.88 \mathrm{e}=0.7 \mathrm{~m} / \mathrm{M}=1.08 \times 10^{-6}$

$$
F F\left(h_{1}, h_{2}\right)=\frac{\left\langle h_{1} \mid h_{2}\right\rangle}{\sqrt{\left\langle h_{1} \mid h_{1}\right\rangle\left\langle h_{2} \mid h_{2}\right\rangle}}
$$

Can we model this behavior by just changing the fluxes?

IC: $a=0.8, p=4.66 e=0.7 \mathrm{~m} / \mathrm{M}=10^{-6}$

$$
F F\left(h_{1}, h_{2}\right)=\frac{\left\langle h_{1} \mid h_{2}\right\rangle}{\sqrt{\left\langle h_{1} \mid h_{1}\right\rangle\left\langle h_{2} \mid h_{2}\right\rangle}}
$$

IC: $a=0.78, p=4.88 e=0.7 \mathrm{~m} / \mathrm{M}=1.08 \times 10^{-6}$

Now, let us add a "kick" to the flux!

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

$$
\frac{d J_{i}}{d \lambda}=0 \text { Action-angles }
$$

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

$$
\frac{d J_{i}}{d \lambda}=0 \text { Action-angles }
$$

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbb{J}) \text { Angles }
$$

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

$$
\frac{d J_{i}}{d \lambda}=0 \quad \text { Action-angles }
$$

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathrm{~J})_{\text {Angles }}^{\text {Frequencies }}
$$

But, the motion is not geodesic, so gravitational radiation changes that description

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

$$
\frac{d J_{i}}{d \lambda}=0 \quad \text { Action-angles }
$$

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathrm{~J}) \text { Angles }
$$

But, the motion is not geodesic, so gravitational radiation changes that description

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i \mathrm{SF}}^{(1)}\left(j_{\left.\left.r_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right) \quad \frac{d J_{i}}{d \lambda}=q G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right), ~()^{2}\right)}\right.
$$

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

$$
\frac{d J_{i}}{d \lambda}=0 \text { Action-angles }
$$

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathrm{~J}) \text { Angles }
$$

But, the motion is not geodesic, so gravitational radiation changes that description

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i S F}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right) \quad \frac{d J_{i}}{d \lambda}=q G_{i S F}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right)
$$

The adiabatic approximation allows to write:

$$
\begin{aligned}
& \frac{d j_{i}}{d \lambda} \approx \omega_{i}(\mathbf{J}) \\
& \frac{d J_{i}}{d \lambda} \approx q\left\langle G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)\right\rangle
\end{aligned}
$$

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

$$
\frac{d J_{i}}{d \lambda}=0 \text { Action-angles }
$$

$$
\frac{d \eta_{i}}{d \lambda}=\omega_{i}(\tau) \text { Angles }
$$

But, the motion is not geodesic, so gravitational radiation changes that description

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i S F}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right) \quad \frac{d J_{i}}{d \lambda}=q G_{i S F}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right)
$$

The adiabatic approximation allows to write:

$$
\begin{aligned}
& \frac{d j_{i}}{d \lambda} \approx \omega_{i}(\mathbf{J}) \\
& \frac{d J_{i}}{d \lambda} \approx q\left\langle G_{i \mathrm{SF}}^{(\mathrm{I})}\left(j_{\left., j, j_{\theta}, \mathbf{J}\right)}\right)\right.
\end{aligned}
$$

For a slowly evolving system, each component of the self force can be written as:

$$
G_{\mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)=\sum_{m n} G_{\mathrm{SF}, \mathrm{mn}}^{(1)}(\mathbf{J}) e^{i\left(m j_{r}+n j_{\theta}\right)}
$$

The impact of resonances (very brief description)

e.g., Flanagan \& Hinderer (0805.3337) The (simplified) GR two body problem in the EMRI case in terms of action-angle variables $\mathbf{J}=\left(J_{r}, J_{\theta}, J_{\phi}\right)$

$$
\frac{d J_{i}}{d \lambda}=0 \text { Action-angles }
$$

$$
\frac{d \eta_{i}}{d \lambda}=\omega_{i}(\tau) \text { Angles }
$$

But, the motion is not geodesic, so gravitational radiation changes that description

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i S F}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right) \quad \frac{d J_{i}}{d \lambda}=q G_{i S F}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}\right)
$$

The adiabatic approximation allows to write:

For a slowly evolving system, each component of the self force can be written as:

$$
G_{\mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)=\sum_{m n} G_{\mathrm{SF}, \mathrm{mn}}^{(1)}(\mathbf{J}) e^{i\left(m j_{r}+n j_{\theta}\right)} \rightarrow\left\langle G_{\mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)\right\rangle=G_{\mathrm{SF}, 00}^{(1)}(\mathbf{J})
$$

Why a kick? Resonant effects within GR

Self-force resonances
Flanagan \& Hinderer (1009.4923)

Why a kick? Resonant effects within GR

Self-force resonances

Why a kick? Resonant effects within GR

Self-force resonances

Why a kick? Resonant effects within GR

Self-force resonances

Why a kick? Resonant effects within GR

Self-force resonances

Why a kick? Resonant effects within GR

Self-force resonances

Why a kick? Resonant effects within GR

Self-force resonances

We can use the same formalism to account for perturbations/modifications

Why a kick? Resonant effects within GR

Self-force resonances

We can use the same formalism to account for perturbations/modifications

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon g_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}, \epsilon^{2}, q \epsilon\right) \quad \frac{d J_{i}}{d \lambda} \approx q G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon G_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)
$$

Why a kick? Resonant effects within GR

Self-force resonances

We can use the same formalism to account for perturbations/modifications

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon g_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}, \epsilon^{2}, q \epsilon\right) \quad \frac{d J_{i}}{d \lambda} \approx q G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon G_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)
$$

Why a kick? Resonant effects within GR

Self-force resonances
Tidal resonances
Flanagan \& Hinderer (1009.4923)

e.g., Gupta, Bonga, Chua, et al., (2104.03422); Gupta, Speri, Bonga, et al., (2205.04808)

We can use the same formalism to account for perturbations/modifications

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon g_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}, \epsilon^{2}, q \epsilon\right) \quad \frac{d J_{i}}{d \lambda} \approx q G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon G_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)
$$

Why a kick? Resonant effects within GR

Self-force resonances
Tidal resonances
Flanagan \& Hinderer (1009.4923)

e.g., Gupta, Bonga, Chua, et al., (2104.03422); Gupta, Speri, Bonga, et al., (2205.04808)

We can use the same formalism to account for perturbations/modifications

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon g_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}, \epsilon^{2}, q \epsilon\right) \quad \frac{d J_{i}}{d \lambda} \approx q G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon G_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)
$$

Why a kick? Resonant effects within GR

Self-force resonances
Tidal resonances
Flanagan \& Hinderer (1009.4923)

e.g., Gupta, Bonga, Chua, et al., (2104.03422); Gupta, Speri, Bonga, et al., (2205.04808)

We can use the same formalism to account for perturbations/modifications

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon g_{i \mathrm{Pert}}^{(\mathrm{1})}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}, \epsilon^{2}, q \epsilon\right) \quad \frac{d J_{i}}{d \lambda} \approx q G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon G_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)
$$

Why a kick? Resonant effects within GR

Self-force resonances
Tidal resonances
Flanagan \& Hinderer (1009.4923)

e.g., Gupta, Bonga, Chua, et al., (2104.03422); Gupta, Speri, Bonga, et al., (2205.04808)

We can use the same formalism to account for perturbations/modifications

$$
\frac{d j_{i}}{d \lambda}=\omega_{i}(\mathbf{J})+q g_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon g_{i \mathrm{Pert}}^{(\mathrm{1})}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)+\mathcal{O}\left(q^{2}, \epsilon^{2}, q \epsilon\right) \quad \frac{d J_{i}}{d \lambda} \approx q G_{i \mathrm{SF}}^{(1)}\left(j_{r}, j_{\theta}, \mathbf{J}\right)+\epsilon G_{i \mathrm{Pert}}^{(1)}\left(j_{r}, j_{\theta}, j_{\phi}, \mathbf{J}\right)
$$

Outline: Three short stories

New physics \rightarrow New fields: scalar fields and BHs
A scalar (and potentially other) charge on the secondary will affect the waveform.

Beyond the adiabatic approximation:
Development of full usable waveforms in beyond-GR theories or environments

Multiband or multi-messenger prospects:
Exploit the fundamental role played by different detectors across the
gravitational and electromagnetic spectra

Multi-band gravitational wave tests of general relativity

Multi-band gravitational wave tests of general relativity

Yunes \& Pretorius (0909.3328)
Considering the parameterized post-Einsteinian (ppE) formalism:

$$
\Psi(f)=\Psi_{\mathrm{GR}}(f)\left(1+\beta u^{2 n-5}\right)
$$

Multi-band gravitational wave tests of general relativity

Considering the parameterized post-Einsteinian (ppE) formalism:

$$
\Psi(f)=\Psi_{\mathrm{GR}}(f)\left(1+\beta u^{2 n-5}\right)
$$

Multi-band gravitational wave tests of general relativity

Considering the parameterized post-Einsteinian (ppE) formalism:

$$
\Psi(f)=\Psi_{\mathrm{GR}}(f)\left(1+\beta u^{2 n-5}\right)
$$

Multi-band gravitational wave tests of general relativity

Considering the parameterized post-Einsteinian (ppE) formalism:

$$
\Psi(f)=\Psi_{\mathrm{GR}}(f)\left(1+\beta u^{2 n-5}\right)
$$

Multi-band gravitational wave tests of general relativity: dCS as an example

Analytical solutions valid only in the small coupling approximation

Multi-band gravitational wave tests of general relativity: dCS as an example

Analytical solutions valid only in the small coupling approximation

$$
\zeta \equiv \frac{16 \pi \alpha^{2}}{M^{4}} \rightarrow \zeta \ll 1
$$

Multi-band gravitational wave tests of general relativity: dCS as an example

Analytical solutions valid only in the small coupling approximation

$$
\zeta \equiv \frac{16 \pi \alpha^{2}}{M^{4}} \quad \rightarrow \quad \zeta \ll 1
$$

Multi-band gravitational wave tests of general relativity: dCS as an example

Analytical solutions valid only in the small coupling approximation

$$
\zeta \equiv \frac{16 \pi \alpha^{2}}{M^{4}} \quad \rightarrow \quad \zeta \ll 1
$$

Multi-band gravitational wave tests of general relativity: dCS as an example

Analytical solutions valid only in the small coupling approximation

$$
\zeta \equiv \frac{16 \pi \alpha^{2}}{M^{4}} \quad \rightarrow \quad \zeta \ll 1
$$

Silva, Holgado, ACA \& Yunes (2004.01253)
I+Love+Q with NICER \& LVC data: $\quad \alpha_{d C S}^{1 / 2} \leq 8.5 \mathrm{~km}$

Multi-band EM signature in massive black hole

binaries: strong thermal X-ray emission until 1-2 days prior to the merger

Multi-band EM signature in massive black hole

 binaries: strong thermal X-ray emission until 1-2 days prior to the mergerMajor Krauth, Davelaar, Haiman, et. al., (2304.02575)

Multi-band EM signature in massive black hole

 binaries: strong thermal X-ray emission until 1-2 days prior to the merger

Major Krauth, Davelaar, Haiman, et. al., (2304.02575)

Discussion

We cannot make a list of the truly unexpected. However, there are sources that the community have speculated about that would be quite interesting and revolutionary, if discovered.

Breaking degeneracies with astrophysics, environmental effects, etc., also requires precise modeling. We can also think about synergies for multi band and multi-messenger observations

It is crucial to match the increased level of modeling precision with the expected level of observation precision.

LISA design is changing. Most predictions and tests might be
 revisited once we know the configuration LISA will fly with.

Discussion

We cannot make a list of the truly unexpected. However, there are sources that the community have speculated about that would be quite interesting and revolutionary, if discovered.

Breaking degeneracies with astrophysics, environmental effects, etc., also requires precise modeling. We can also think about synergies for multi band and multi-messenger observations

It is crucial to match the increased level of modeling precision with the expected level of observation precision.

LISA design is changing. Most predictions and tests might be
 revisited once we know the configuration LISA will fly with.

Thank you!
cardenas-avendano@princeton.edu

