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(In principle) GWs can inform us about new fields
In BH environments, but dynamics is complex
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(In principle) GWs can inform us about new fields
In BH environments, but dynamics is complex

L 7

Accretion, superradiance, dynamical friction, scalar-tensor theories,
bosonic stars...



Supercomputers can help
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We start where we start...

Q Lecture 1: Level zero - theoretical background

« How to solve PDEs on a computer
* Overview of numerical relativity

* The variables of the engrenage code



We start where we start...

U 76X  Lecture 2: Level one - 4 practical exercises
‘ 3 ,..)'x,..,: . Initial conditions - adding the scalar field to a BH

L  Modifying equations of motion for the scalar

 Modifying the dynamical gauge for the metric

* Diagnostics - measuring scalar energy fluxes
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A Lecture 1: Level zero



Lecture 1: theoretical background

. ‘j)
c « How to solve PDEs on a computer
* Overview of numerical relativity

* The variables of the engrenage code



“INature] does not care about our mathematical
difficulties; [it] integrates [numeri]cally.”

- Albert Einstein (roughly said this)



How would Nature solve the wave equation?

0°g  d%g .
—— — —— + non linear terms = f(energy, momentum)
ot ox?

Each event in space
“feels” the points
around Iit, and
evolves forward In
time In response




How do | represent a continuous function on a computer?

Position x 0 0.5 1 1.5 2 2.5

Field g 0 1 3 3 1 0

Field g

Space x




How do | find spatial derivatives numerically?

= Source

g(x + Ax) — g(x) B g(x) — g(x — Ax)

2
ag o AXx AXx

mnN/

Ox? Ax




This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Ax=0.5
D N <
Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0
T First derivative stencil
- 0 1 og  g(x+ Ax) — g(x — Ax)
ox DAx

dg/dx




This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0
T First derivative stencil
- 0 1 og  g(x+ Ax) — g(x — Ax)
ox DAx

dg/dx 1




This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0
T First derivative stencil
-1 0 1 og gx+ Ax) — g(x — Ax)
ox 2Ax

dg/dx 1




This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0
T First derivative stencil
-1 0 1 og gx+ Ax) — g(x — Ax)
ox 2Ax

dg/dx 3 1




This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0

dg/dx 3 1 -2




This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0

dg/dx 3 1 -2 -2

What about the end points?



This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0

Use one sided stencil - doesn’t
have to be centralised

dg/dx 3 1 -2 -2 -2




This approach is called finite differencing

We can see it as the convolution of a stencil with the current state vector.

Position x 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0

OR use a boundary condition -
some knowledge about the function
- e.g. maybe its derivative goes to zero here

%

dg/dx 3 1 -2 -2 0




Finite differencing - matrix representation

We can also represent this convolution in matrix form:

Position x 0 0.5 1 1.5 2.5
Field g 0 1 3 2 0

dg/dx = Matrix D

2 2

3 0 1

1 — -1 0 1

-2 1] 0 | 1

-2 -1 0

-2 -2

All blank entries zero




How do | integrate time derivatives numerically?

— = + Source

= Source

0
(g; + Source)




Matrix implementation of time evolution

Position X 0 0.5 1.5 2.5
Field g 0 1 2 0
Field K 0 2 1 0
dKdt = Matrix D2 Source
2 X 0
3 X 3
1 — 4
0 5
-2 X 7
-2 X 0




Matrix implementation of time evolution

Position X 0 0.5 1 1.5 2 2.9
Field g 0 1 3 2 1 0
Field K 0 2 1 1 1 0
dgdt = K
0 0
2 2
1 = 1
1 1
1 1
0 0




GR & NR 101
Rab - R/2 gab =81t Tan



Curved spacetime

ds® = f(x,t) dt* + g(x,t) dz* +

2 h(z,t) dt dx




Curved spacetime

ds* = (dt dr dy dz)

doo Yo1
gio 911
g20 921
gso 931

—

902
gi12
g22
g32

gos
gi3
ga3
gs3

“The spacetime metric”

gab(tv f)

dt
dx

dz



The Einstein equation tells us how the
metric should look, given some
energy/matter distribution

- . _
........
.....

2d surface represents 4d spacetime

Rab - R/2 gab = 8“ Tab

“Matter tells spaoetime how to curve...”



The Einstein equation tells us how the
metric should look, given some
energy/matter distribution

4 constraint equations for any time slice - non linear elliptic/Poisson equation

—

...°_~ o ";\‘\\\? '::s%.... -_ 62
2771/ RS2 .
& ll"‘\\\\\\\\”" + non linear terms = f(energy, momentum)
““\q”;;:;:: 0x?
/;/..
(A X An evolution equation for all time - non linear hyperbolic/wave equation
t \.’o.:/ a2’ az
> _Z2¢% + non linear terms = f(energy, momentum)
Rab - R/2 Jab = 81 Tab atz axz

“Matter tells spaoetime how to curve...”



The metric determines the motion of
matter
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Rab - R/2 gab = 8“ Tab

”...spaoe’cime tells matter how to weove.”



The metric determines the motion of
matter

Klein Gordon equation for the scalar field u

Y 'V av
U — ——
S Yy du

Rab - R/2 gab = 8“ Tab

”...space’cime tells matter how to weove.”



Numerical relativity

Fill using Einstein equation and continuity for matter

“IOCGI _I_l eu 372 92 r 10N 11Nncar erms = j(CNnergy, momentuinl
dv
gV, V u=—

boundary
conditions

/(axxgab’ x8abs Sab T )

initial data (0,85, g.»» 1) satisfying
0°g
0x?

non linear terms = f(energy, momentum)



Numerical relativity

“ L, Fill using Einstein equation (classical black holes are stable)
local time

0,8, = 948, = 0 (a bit boring!)

boundary conditions

= asymptotically flat space

initial data = a black hole , no other matter



Inspiral Merger Ring-

arET
B

| === Black hole separation
=== Black hole relative velocity

O NWLbH

0.30 0.35 0.40 0.45
Time (s)

GW150914

t=14 September 2015, x = LIGO, Earth

Separation (Rs)

(Roughly)

det (g ab)



ADM decomposition, in theory and In
practise



What is the ADM
deCOm pOsitiOn ? We can decompose a vector into the part that lies in a

surface and a part normal to the surface

0
L

o. N
(4

i

V(:v

5 (3



What is the ADM
decomposition?

We can decompose the 4D spacetime metric into the
part that lies in a 3D spatial hypersurface and a part
normal to the 3D spatial hypersurface

i&.&.‘oo WIARTS v
z gu.\/ = ﬂ/,/\./ (“\‘ A

)




We can also decompose the Einstein equations themselves into the part
that lies in the surface and the part normal to the surface

Wn'(Gy, =8aT,) = H = OR+ K>+ KK' — 167p = 0
PG, - 8aT,) =  M;= DK — DK —8zS;=0

PIPG,, —8aT,) =  0,K; = fla, By, K, d(variables), matter)

Where we defined dtylj = — ZaKlj + Dlﬂj T Djﬁi



If we know the metric, we can read off the quantities from
the line element in the adapted coordinates

_ In a.&ap\c& cordirales l\u.a. \vn_
What is the ADM denah can be  wler an

decomposition? . .
P as* = - ( a‘-(&'(@ A" ¢ 28/ kA

R St A



What is the ADM
decomposition?



The spatial metric tells us about proper distances on the
spacelike hypersurface, which can be flat or curved

What (physically) is

. . %529
the spatial metric y;? 2
> ii\ »‘gl
1 SO" de)

d-QZ == Xs' ao:;o\:::d



BSSN decomposition
of the Intrinsic
curvature/spatial metric

We perform a conformal decomposition of
the spatial metric into a conformal part and
an overall conformal factor

dh —
i =€ 1y

The rough motivation is to “factor out” any large
overall stretching of spacetime (ie, around
singularities) into the conformal factor
(at this point we haven’t defined how exactly to
make the split)



What relates to the spatial metric Vii In engrenage?

1 #uservariables.py

2

3 # hard code number of ghosts to 3 here

4 num_ghosts = 3

5

6 # This file provides the list of (rescaled) variables to be evolved and

/! # assigns each one an index and its parity

8 # For description of the data structure see https://qgithub.com/GRChombo/engrenage/wiki/Useful-code-

background

9

10 idx_u = 0 # scalar field

1T i, = 1 # scalar field conjugate momentum (roughly the time derivative of u)

7 idx_phi™s, = 2 # conformal factor of metric, \gamma_ij = e~{4 \phi} \bar \gamma_ij

idx_hrr = 3 # rescaled \epsilon_rr —> h_rr - deviation of rr component of the metric from flat
1 idx_htt J =4 # rescaled \epsilon_tt -> h_tt - deviation of tt component of the metric from flat
N, idx_hpp / = 5 # rescaled \epsilon_pp -> h_pp - deviation of pp component of the metric from flat
s o SV = b6 # mean curvature K

17 idx_arr = 7 # rescaled \tilde A_rr —> a_rr - (roughly) time derivative of hrr

18  idx_att = 8 # rescaled \tilde A_tt —> a_tt - (roughly) time derivative of htt

19 1dx_app =9 # rescaled \tilde A_pp —> a_pp - (roughly) time derivative of hpp

20 idx_lambdar = 10 # rescaled \bar\Lambda —> lambda”™r

21 idx_shiftr = 11 # rescaled \beta™r —> radial shift - qauge variable for relabelling spatial points
22 1dx_br = 12 # rescaled B™"r —> b™r — time derivative of shift

23 1idx_lapse = 13 # lapse - gauge variable for time slicing

24



The lapse is related to how much proper time passes for
an observer going to the next slice

(not the full story - see the shift coming up soon)

What (physically) is
the lapse a?




A spatially varying lapse indicates that the normal
observers are accelerated

This is important for the stability of the puncture gauge in
NR, where we will observe the “collapse of the lapse”.

What (physically) is hocdlerbon ok nomol HEOSS
the lapse a? %uZ A O,




What relates to the lapse in engrenage?

1 #uservariables.py
2
3 # hard code number of ghosts to 3 here
4 num_ghosts = 3
5
6 # This file provides the list of (rescaled) variables to be evolved and
/! # assigns each one an index and its parity
8 # For description of the data structure see https://qgithub.com/GRChombo/engrenage/wiki/Useful-code-
background
9
10 idx_u = 0 # scalar field
17 idx_v =1 # scalar field conjugate momentum (roughly the time derivative of u)
12 1idx_phi = 2 # conformal factor of metric, \gamma_1ij = e~{4 \phi} \bar \gamma_1ij
12 idx_hrr = 3 # rescaled \epsilon_rr —> h_rr - deviation of rr component of the metric from flat
14 idx_htt = 4 # rescaled \epsilon_tt -> h_tt - deviation of tt component of the metric from flat
15 1idx_hpp = 5 # rescaled \epsilon_pp -> h_pp - deviation of pp component of the metric from flat
16 1dx K =0 # mean curvature K
17 idx_arr = 7 # rescaled \tilde A_rr —> a_rr - (roughly) time derivative of hrr
18 idx_att = 8 # rescaled \tilde A_tt —> a_tt - (roughly) time derivative of htt
19 1dx_app =9 # rescaled \tilde A_pp -> a_pp - (roughly) time derivative of hpp
20 idx_lambdar = 10 # rescaled \bar\Lambda —> lambda”™r
21 idx_shiftr = 11 # rescaled \beta™r —> radial shift - qauge variable for relabelling spatial points
22 ey, = 12 # rescaled B"r —> b™r — time derivative of shift
2€ idx_lapse Y = 13 # lapse - gauge variable for time slicing



The shift tells us about how we relabel coordinates from
one slice to the next. | like to think of it as the amount the
normal observers have to “jump” to get back to the
coordinate they were on at the last time slice

What (physically) is
the shift /'? i (i i =)

X




1. Lapse aims (roughly) to minimise K

da ~ — 20K
Dynamical gauge

2. Shift aims (roughly) to minimise I = ;7jkf;k

atﬁi ~ T — Wﬁi



Black hole “punctures”

The initial “"wormhole”™ metric evolves into a “trumpet” shape that terminates at a finite
radius outside the singularity




What relates to the shift in engrenage?

1 #uservariables.py
2
3 # hard code number of ghosts to 3 here
4 num_ghosts = 3
5
6 # This file provides the list of (rescaled) variables to be evolved and
/! # assigns each one an index and its parity
8 # For description of the data structure see https://qgithub.com/GRChombo/engrenage/wiki/Useful-code-
background
9
10 idx_u = 0 # scalar field
17 idx_v =1 # scalar field conjugate momentum (roughly the time derivative of u)
12 1idx_phi = 2 # conformal factor of metric, \gamma_1ij = e~{4 \phi} \bar \gamma_1ij
12 idx_hrr = 3 # rescaled \epsilon_rr —> h_rr - deviation of rr component of the metric from flat
14 idx_htt = 4 # rescaled \epsilon_tt -> h_tt - deviation of tt component of the metric from flat
15 1idx_hpp = 5 # rescaled \epsilon_pp -> h_pp - deviation of pp component of the metric from flat
16 1dx K =0 # mean curvature K
17 idx_arr = 7 # rescaled \tilde A_rr —> a_rr - (roughly) time derivative of hrr
= 8 # rescaled \tilde A_tt —> a_tt - (roughly) time derivative of htt
=9 # rescaled \tilde A_pp -> a_pp - (roughly) time derivative of hpp
= 10 # rescaled \bar\Lambda —> lambda”r
= 11 # rescaled \beta™r —> radial shift - qauge variable for relabelling spatial points
= 12 # rescaled B™"r —> b™r — time derivative of shift
= 13 # lapse — gauge variable for time slicing




The extrinsic curvature can be viewed in two equivalent
ways:

1. ltisrelated to the Lie Derivative of the spatial metric
along the normal vector congruence

What (physically) is the K = _ 1o

.« )
extrinsic curvature K;? 2

In this way it is related to the time derivative of the metric
as

n ylj



The extrinsic curvature can be viewed in two equivalent
ways:

2. ltisrelated to the (covariant) derivative of the normal
vector projected into the spatial slice

What (physically) is the K;=—y"y'V,n,
extrinsic curvature K;?




What (physically) is the
trace of the extrinsic

curvature K?



BSSN decomposition
of the extrinsic
curvature

We perform a conformal decomposition plus
a separation into trace and trace free parts
as:

]
K;j = (A = 37;K)

The rough motivation is to split out an overall
expansion rate (the mean curvature K) and a
traceless part relating to gravitational wave

content



What relates to the K;; in engrenage?

1 #uservariables.py

2

3 # hard code number of ghosts to 3 here

4 num_ghosts = 3

5

6 # This file provides the list of (rescaled) variables to be evolved and

/! # assigns each one an index and its parity

8 # For description of the data structure see https://qgithub.com/GRChombo/engrenage/wiki/Useful-code-

background

9

10 idx_u = 0 # scalar field

17 idx_ v =1 # scalar field conjugate momentum (roughly the time derivative of u)

12 1idx_phi = 2 # conformal factor of metric, \gamma_ij = e~{4 \phi} \bar \gamma_ij

12 1dx_hrr = 3 # rescaled \epsilon_rr —> h_rr - deviation of rr component of the metric from flat
14 idx_htt = 4 # rescaled \epsilon_tt -> h_tt - deviation of tt component of the metric from flat
15 1dx--hpQ, =5 # rescaled \epsilon_pp -> h_pp - deviation of pp component of the metric from flat
16 =0 # mean curvature K

! = 7 # rescaled \tilde A_rr —> a_rr - (roughly) time derivative of hrr

\ = 8 # rescaled \tilde A_tt —> a_tt - (roughly) time derivative of htt

1ONJddx_app , =9 # rescaled \tilde A_pp -> a_pp - (roughly) time derivative of hpp
20 1dx~tambdar = 10 # rescaled \bar\Lambda —> lambda"r
21 1idx_shiftr = 11 # rescaled \beta™r —> radial shift — qgauge variable for relabelling spatial points
22 1dx_br = 12 # rescaled B™"r —> b™r — time derivative of shift
23 1idx_lapse = 13 # lapse — gauge variable for time slicing



End of lecture 1 -
you are now at level 1!




Lecture 2: Level one




Lecture 2: Four practical exercises

T\ EE
- m \ * Initial conditions - adding the scalar field to a BH
v .\ A F
,  Modifying equations of motion for the scalar
p - * Modifying the dynamical gauge for the metric
- » Diagnostics - measuring scalar energy fluxes




Engrenage exercise 1: initial conditions

* Add a spatially constant scalar field :
1y = 107° to the black hole initial
conditions |

S
* We need to make sure the Hamiltonian < °|/\/.
constraint is solved, so also set K to

achieve this. /-":

» Estimated lines of code required: 2-4 o 25 s 75 a0 s 130 15 200

I+

https://inspirehep.net/literature/1731856



https://inspirehep.net/literature/1731856

Engrenage exercise 2 - change the scalar eom

| — f/Tn:~0 |
: " \:"- Mm = 1.0 (no backreaction E/Tm~ 109
* Find and change the potential to: SRS ’ —= 1T~ 500
I 2.2 I 21,4 10 ===
V() = —pu-u”+—u-Au R
2 4 S -
Investigate the effect of changing the scalar T\
mass p and the self interaction 4. M
- Estimated lines of code required: 2-3 1 iz

r

https://inspirehep.net/literature/1731856



https://inspirehep.net/literature/1731856

Engrenage exercise 3 - change the gauge

* |Implement the shock avoiding gauge
in https://inspirehep.net/literature/
2111279

0.a=—(a*+x) K

with k = 0.05

 What does it change about the
evolution of the collapse of the
lapse?

 How sensitive is stability to the
choice of the parameter kappa?

value over time of lapse

o
0
L

o
o
'

o
o

o
N

o
-

- t=3.75
t=7.5
— t=11.25
= t=15.0
t=18.75
— =225

10

20

25

30


https://inspirehep.net/literature/2111279
https://inspirehep.net/literature/2111279
https://inspirehep.net/literature/2111279

Engrenage exercise 4: diagnostics

* Write a diagnostic to calculate the
radial flux across a spherical
coordinate surface as a function of

radius “’
F = 47zr2\/}_’5r ¢ 1\

+ S; = — v du is the momentum
density of the scalar field )

 \What happens to the flux at small
radii over time?



Extension - oscillaton



Engrenage oscillaton

Field obeying massive Klein Gordon equation can have stable solitonic solutions with gravity




Engrenage oscillaton

 Repeat exercises 2-4 from the BH example for the oscillaton

value over time of u

0.04 4=
N
003 t=157
0.02 - . t=3.14
\ t=4.71
0.01 - t=6.27
t=7 84
U0 1 3 t=0941 |
0014 t=10.98
|~ t=12.55
~0.02 - t=14.12
t=15.69
003~ t=17.25
~0.04 - t=18.82
0 5 10 15 20 25 30 35

olr = ()

olr = ()

olr = ()

=050
0.025
().(4X)
0.025 {
——BAN-===-- GRChombo
() 5N 1O04) 15N) 2000)
0.0 ‘f — {).{)6

(.00

=B AN+ ====-GRChombo

AN 1M 15040 2000)

—BAM
----- GRChanbo

100 200 300 4(N) AN 6040
t

https://inspirehep.net/literature/1687181



https://inspirehep.net/literature/1687181

Some useful technical points



Matter energy (non) conservation



Matter energy (non) conservation

The global breakdown of
energy conservation can
be quantified as a source
related to the curvature
of the spacetime

@

0,k = Net Flux + §

o~ [r 7 av



energy

Matter energy (non) conservation

Oscillaton energy conservation

— J©@-Qoav The global breakdown of
T e e e e f f - energy conservation can
be quantified as a source

related to the curvature
of the spacetime

0.005 -
0.000 ~
—0.005 -

0,k = Net Flux + §

—0.010 ~

—0.015 ~

—0.020 -

o~ [r 7 av

0 10 20 30 40 50 60 70 80
simulation time

https://inspirehep.net/literature/1861156



https://inspirehep.net/literature/1861156

Gauge dependent quantities:
How can a “scalar” be gauge dependent?



boundaries :

Scalars

. e '

hypersurfaces

Consider the value of a
scalar at some event E

Do all observers agree
on the value of the scalar

field 1?

Do all observers agree
on the value of the
energy density?

— M U
p=n"n’l,



Matter energy (non) conservation

Is the integral over a
spatial volume gauge
dependent?

Who measures this?

Often more useful to say
slicing dependent



Units



What is the separation
of the two black holes
In your simulation?

It abod \OP®
i Lover e
NUMALLCARL - OLC&\&Q&
LE IST % AT






You have now
reached the end
of the course,
good luck In your

research!

Just remember to have fun, make mistakes, and persevere.

Advice from scipy.org



http://scipy.org

