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Accretion, superradiance, dynamical friction, scalar-tensor theories, 
bosonic stars…

(In principle) GWs can inform us about new fields 
in BH environments, but dynamics is complex



Supercomputers can help



is bornaka Baby

https://github.com/GRTLCollaboration/engrenage/tree/NewHorizonsForPsi



THERE IS NOW 
A LEVEL ZERO

ME

SUPERVISOR

London, England, October 2013…

We start where we start…
MY CODE



We start where we start…

Lecture 1: Level zero - theoretical background 

• How to solve PDEs on a computer


• Overview of numerical relativity


• The variables of the engrenage code



We start where we start…

Lecture 2: Level one - 4 practical exercises 

• Initial conditions - adding the scalar field to a BH


• Modifying equations of motion for the scalar


• Modifying the dynamical gauge for the metric


• Diagnostics - measuring scalar energy fluxes



Lecture 1: Level zero



Lecture 1: theoretical background

• How to solve PDEs on a computer


• Overview of numerical relativity


• The variables of the engrenage code



“[Nature] does not care about our mathematical 
difficulties; [it] integrates [numeri]cally.” 

- Albert Einstein (roughly said this)



How would Nature solve the wave equation?

∂2g
∂t2

−
∂2g
∂x2

+ non linear terms = f(energy, momentum)

Each event in space 
“feels” the points 
around it, and 
evolves forward in 
time in response 



Field g

Space x

Field g

Space x

How do I represent a continuous function on a computer?

Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 3 1 0



How do I find spatial derivatives numerically?

∂2g
∂t2

−
∂2g
∂x2

= Source

xΔx

∂2g
∂x2

≈
g(x + Δx) − g(x)

Δx − g(x) − g(x − Δx)
Δx

Δx

Δx

t

g(x) g(x + Δx)g(x − Δx)



This approach is called finite differencing

Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx

 = 0.5Δx

We can see it as the convolution of a stencil with the current state vector.



Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 1

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx

This approach is called finite differencing
We can see it as the convolution of a stencil with the current state vector.



Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 1

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx

This approach is called finite differencing
We can see it as the convolution of a stencil with the current state vector.



Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 3 1

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx

This approach is called finite differencing
We can see it as the convolution of a stencil with the current state vector.



Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 3 1 -2

-1 0 1

This approach is called finite differencing
We can see it as the convolution of a stencil with the current state vector.



Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 3 1 -2 -2

-1 0 1

What about the end points?


This approach is called finite differencing
We can see it as the convolution of a stencil with the current state vector.



Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 3 1 -2 -2 -2

-2 2Use one sided stencil - doesn’t 
have to be centralised

This approach is called finite differencing
We can see it as the convolution of a stencil with the current state vector.



Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

dg/dx 3 1 -2 -2 0

OR use a boundary condition -  
some knowledge about the function  
- e.g. maybe its derivative goes to zero here

This approach is called finite differencing
We can see it as the convolution of a stencil with the current state vector.



We can also represent this convolution in matrix form: 

Finite differencing - matrix representation

Position x
 0 0.5 1 1.5 2 2.5

Field g 0 1 3 2 1 0

0

1

3

2

1

0

=

gMatrix Ddg/dx =
2

3

1

-2

-2

-2

-2 2

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-2 2

All blank entries zero



How do I integrate time derivatives numerically?

x

t

∂2g
∂t2

−
∂2g
∂x2

= Source

∂K
∂t

=
∂2g
∂x2

+ Source

∂g
∂t

= K

ΔK = Δt ( ∂2g
∂x2

+ Source)
Δg = K Δt

{
Δt g(t)

g(t) + Δg



Position x
 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0
Field K 0 2 1 1 1 0

0

1

3

2

1

0

=

gMatrix D^2dKdt =
2

3

1

-2

-2

-2

X X

X X X

X X X

X X X

X X X

X X

Matrix implementation of time evolution

0

3

4

5

7

0

Source

+



0

2

1

1

1

0

=

Kdgdt =
0

2

1

1

1

0

Position x
 0 0.5 1 1.5 2 2.5
Field g 0 1 3 2 1 0
Field K 0 2 1 1 1 0

Matrix implementation of time evolution



GR & NR 101 
Rab - R/2 gab = 8π Tab



Curved spacetime

t
x

ds2 = f(x, t) dt2 + g(x, t) dx2 +

2 h(x, t) dt dx



Curved spacetime

{
“The spacetime metric”

gab(t, x⃗)

ds2 =
(

dt dx dy dz
)

⎛

⎜

⎜

⎝

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

dt

dx

dy

dz

⎞

⎟

⎟

⎠



The Einstein equation tells us how the 
metric should look, given some  

energy/matter distribution

“Matter tells spacetime how to curve…”

2d surface represents 4d spacetime

Rab - R/2 gab = 8π Tab



t
x

The Einstein equation tells us how the 
metric should look, given some  

energy/matter distribution

“Matter tells spacetime how to curve…”

∂2g
∂x2

+ non linear terms = f(energy, momentum)

∂2g
∂t2

−
∂2g
∂x2

+ non linear terms = f(energy, momentum)

4 constraint equations for any time slice - non linear elliptic/Poisson equation

An evolution equation for all time - non linear hyperbolic/wave equation

Rab - R/2 gab = 8π Tab



The metric determines the motion of 
matter

“…spacetime tells matter how to move.”

Rab - R/2 gab = 8π Tab



t
x

Rab - R/2 gab = 8π Tab

gμν ∇μ ∇νu =
dV
du

Klein Gordon equation for the scalar field u

The metric determines the motion of 
matter

“…spacetime tells matter how to move.”



Numerical relativity

“local time”

“space”

boundary 
conditions
(∂xxgab, ∂xgab, gab, Tab)

initial data  satisfying(∂tgab, gab, Tab)
∂2g
∂x2

+ non linear terms = f(energy, momentum)

Fill using Einstein equation and continuity for matter
∂2g
∂t2

−
∂2g
∂x2

+ non linear terms = f(energy, momentum)

gμν ∇μ ∇νu =
dV
du



“local time”

“space”

boundary conditions  

= asymptotically flat space

Fill using Einstein equation (classical black holes are stable) 
 (a bit boring!)∂tgμν = ∂ttgμν = 0

initial data = a black hole , no other matter 

Numerical relativity



GW150914
t=14 September 2015, x = LIGO, Earth 

(Roughly)   
1

det(gab)



ADM decomposition, in theory and in 
practise



What is the ADM 
decomposition? We can decompose a vector into the part that lies in a 

surface and a part normal to the surface



What is the ADM 
decomposition?

We can decompose the 4D spacetime metric into the 
part that lies in a 3D spatial hypersurface and a part 

normal to the 3D spatial hypersurface



We can also decompose the Einstein equations themselves into the part 
that lies in the surface and the part normal to the surface

(3)R + K2 + KijKij − 16πρ = 0

DjK
j
i − DiK − 8πSi = 0

ℋ ≡

ℳi ≡

∂tKij = f(α, βi, γij, Kij, ∂i(variables), matter)

nμnν(Gμν − 8πTμν) ⟹

Pμ
i Pν

j (Gμν − 8πTμν) ⟹

Pμ
i nμ(Gμν − 8πTμν) ⟹

Where we defined   ∂tγij = − 2αKij + Diβj + Djβi



What is the ADM 
decomposition?

If we know the metric, we can read off the quantities from 
the line element in the adapted coordinates



What is the ADM 
decomposition?



What (physically) is 
the spatial metric ?γij

The spatial metric tells us about proper distances on the 
spacelike hypersurface, which can be flat or curved



BSSN decomposition 
of the intrinsic 

curvature/spatial metric

We perform a conformal decomposition of 
the spatial metric into a conformal part and 

an overall conformal factor 

The rough motivation is to “factor out” any large 
overall stretching of spacetime (ie, around 

singularities) into the conformal factor  
(at this point we haven’t defined how exactly to 

make the split)

γij = e4ϕ γ̄ij



What relates to the spatial metric  in engrenage?γij



What (physically) is 
the lapse ?α

The lapse is related to how much proper time passes for 
an observer going to the next slice  

(not the full story - see the shift coming up soon)

- 1



A spatially varying lapse indicates that the normal 
observers are accelerated 

This is important for the stability of the puncture gauge in 
NR, where we will observe the “collapse of the lapse”.

What (physically) is 
the lapse ?α



What relates to the lapse in engrenage?



What (physically) is 
the shift ?βi

The shift tells us about how we relabel coordinates from 
one slice to the next. I like to think of it as the amount the 

normal observers have to “jump” to get back to the 
coordinate they were on at the last time slice



Dynamical gauge

1. Lapse aims (roughly) to minimise K 

2. Shift aims (roughly) to minimise Γ̄i = γ̄jkΓ̄i
jk

∂tα ∼ − 2αK

∂tβi ∼ Γ̄i − ηβi



The initial “wormhole” metric evolves into a “trumpet” shape that terminates at a finite 
radius outside the singularity

Black hole “punctures”



What relates to the shift in engrenage?



What (physically) is the 
extrinsic curvature ?Kij

The extrinsic curvature can be viewed in two equivalent 
ways: 

1. It is related to the Lie Derivative of the spatial metric 
along the normal vector congruence 

 
 

In this way it is related to the time derivative of the metric 
as 

Kij ≡ −
1
2

ℒn γij

∂tγij = − 2αKij + Diβj + Djβi



The extrinsic curvature can be viewed in two equivalent 
ways: 

2. It is related to the (covariant) derivative of the normal 
vector projected into the spatial slice 

Kij ≡ − γμ
i γν

j ∇μnν
What (physically) is the 
extrinsic curvature ?Kij



What (physically) is the 
trace of the extrinsic 

curvature ?K



BSSN decomposition 
of the extrinsic 

curvature

We perform a conformal decomposition plus 
a separation into trace and trace free parts 

as: 

The rough motivation is to split out an overall 
expansion rate (the mean curvature K) and a 
traceless part relating to gravitational wave 

content

Kij = e4ϕ(Āij −
1
3

γ̄ijK)



What relates to the  in engrenage?Kij



End of lecture 1 -  
you are now at level 1!



Lecture 2: Level one



Lecture 2: Four practical exercises

• Initial conditions - adding the scalar field to a BH


• Modifying equations of motion for the scalar


• Modifying the dynamical gauge for the metric


• Diagnostics - measuring scalar energy fluxes



• Add a spatially constant scalar field 
 to the black hole initial 

conditions


• We need to make sure the Hamiltonian 
constraint is solved, so also set K to 
achieve this.


• Estimated lines of code required: 2-4

u0 = 10−6

Engrenage exercise 1: initial conditions

https://inspirehep.net/literature/1731856 

https://inspirehep.net/literature/1731856


• Find and change the potential to:





Investigate the effect of changing the scalar 
mass  and the self interaction .


• Estimated lines of code required: 2-3

V(u) =
1
2

μ2u2 +
1
4

μ2λu4

μ λ

Engrenage exercise 2 - change the scalar eom 
 

https://inspirehep.net/literature/1731856 

https://inspirehep.net/literature/1731856


• Implement the shock avoiding gauge 
in https://inspirehep.net/literature/
2111279 
 

 
 
with 


• What does it change about the 
evolution of the collapse of the 
lapse?


• How sensitive is stability to the 
choice of the parameter kappa?

∂τα = − (α2 + κ) K

κ = 0.05

Engrenage exercise 3 - change the gauge 
 

https://inspirehep.net/literature/2111279
https://inspirehep.net/literature/2111279
https://inspirehep.net/literature/2111279


• Write a diagnostic to calculate the 
radial flux across a spherical 
coordinate surface as a function of 
radius 
 




•  is the momentum 
density of the scalar field


• What happens to the flux at small 
radii over time?

F = 4πr2 γSr

Si = − v ∂ju

Engrenage exercise 4: diagnostics 
 



Extension - oscillaton



Field obeying massive Klein Gordon equation can have stable solitonic solutions with gravity

Engrenage oscillaton



• Repeat exercises 2-4 from the BH example for the oscillaton

Engrenage oscillaton

https://inspirehep.net/literature/1687181  

https://inspirehep.net/literature/1687181


Some useful technical points



Matter energy (non) conservation



Matter energy (non) conservation

The global breakdown of 
energy conservation can 
be quantified as a source 
related to the curvature 

of the spacetime








∂tE = Net Flux + S

S ∼ ∫ Γμ
νt Tν

μ dV

Flux

E



https://inspirehep.net/literature/1861156 

Oscillaton energy conservation

Matter energy (non) conservation

The global breakdown of 
energy conservation can 
be quantified as a source 
related to the curvature 

of the spacetime








∂tE = Net Flux + S

S ∼ ∫ Γμ
νt Tν

μ dV

https://inspirehep.net/literature/1861156


Gauge dependent quantities: 
How can a “scalar” be gauge dependent?



Scalars

Consider the value of a 
scalar at some event E


Do all observers agree 
on the value of the scalar 

field ?


Do all observers agree 
on the value of the 

energy density?


u

ρ = nμnνTμν



Matter energy (non) conservation

Is the integral over a 
spatial volume gauge 

dependent?


Who measures this?


Often more useful to say 
slicing dependent


Flux

Q



Units



What is the separation 
of the two black holes 

in your simulation?





You have now 
reached the end 

of the course, 
good luck in your 

research!

Advice from scipy.org

http://scipy.org

