
Lecture 1: Superradiance

Sam Dolan

New Horizons for Psi
1st July, 2024.

Sam Dolan (Sheffield) Superradiance 1st July 2024 1 / 50



Superradiance

“Superradiance is a radiation enhancement process
that involves dissipative systems.”
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1 A toy model for superradiance

2 Superradiance in a flowing fluid

3 Superradiance from a charged black hole

4 Superradiance and the laws of black hole
mechanics

5 Spinning black holes and the Penrose process
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1. A toy model for superradiance
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A Toy Model

A 1D scattering problem:
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A Toy Model

Consider a scalar field Φ of charge q in an electromagnetic
four-potential Aµ in Minkowski spacetime
ηµν = diag [−1,+1,+1,+1],

with some additional potential V (xµ),

(∂µ + iqAµ) η
µν (∂ν + iqAν) Φ− V (xµ)Φ = 0.

Let’s make this as simple as possible:
A static electric potential: Aµ = [φ(x),0]
A monochromatic mode of the field: Φ(xµ) = Φ(x)e−iωt.{

∇2 + (ω − qφ(x))
2 − V (x)

}
Φ(x) = 0.

A 1D system:{
d2

dx2
+ (ω − qφ(x))

2 − V (x)

}
Φ(x) = 0.
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A Toy Model

1D scattering problem:{
d2

dx2
+ (ω − qφ(x))2 − V (x)

}
Φ(x) = 0.

Asymptotic regions:

Assume that

lim
x→±∞

V (x) = 0, lim
x→+∞

φ(x) = 0, lim
x→−∞

φ(x) = φ0.

Asymptotic solutions:

x→ +∞ : Φ(x) = exp (±iωx) ,
x→ −∞ : Φ(x) = exp (±iω̃x) .

Here ω̃ ≡ ω − ωc with ωc = qφ0.
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A Toy Model

A 1D scattering problem:

Φ<(x) ≡ BT e
−iω̃x Φ>(x) ≡ AI e

−iωx +AR e
iωx

ω̃ ≡ ω − qφ0.
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A Toy Model

{
d2

dx2
+ (ω − qφ(x))2 − V (x)

}
Φ(x) = 0.

If Φ1 and Φ2 are solutions to the above equation, then their
Wronskian

W [Φ1,Φ2] = Φ1
dΦ2

dx
− Φ2

dΦ1

dx
is constant, i.e., independent of x.

If Φ is a solution then Φ∗ is also a solution, because the potentials
φ and V (x) are real.

Evaluating W [Φ,Φ∗] in the limits x→ ∞ and x→ −∞,

−iω̃ |BT |2 = −iω
(
|AI |2 − |AR|2

)
Hence

R = 1− ω̃

ω
T , R ≡

∣∣∣∣AR
AI

∣∣∣∣2 , T ≡
∣∣∣∣BT
AI

∣∣∣∣2 .
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A Toy Model

R = 1− ω̃

ω
T ω̃ ≡ ω − qφ0

Here the transmission coefficient T ≥ 0 by definition.
Let’s assume T > 0.

If ω̃/ω > 0 then we have partial reflection: R < 1.

If ω̃ = 0 then total reflection: R = 1.

If ω̃/ω < 0 then superradiance: R > 1.
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Exercise 1.1

Consider a special case of the toy model with a step-change in the
electric potential and delta-function barrier:

φ(x) = φ0Θ(−x), V (x) = V0 δ(x)

The scattering solution is:

Φ(x) = Φ<(x)Θ(−x) + Φ>(x)Θ(x), Φ< ≡ BT e
−iω̃x,

Φ> ≡ AIe
−iωx +ARe

+iωx.

1 By putting the solution into the differential equation, show that

AI +AR = BT (1)

ω (AI −AR) = (ω̃ + iV0)BT . (2)

2 Hence show that

AR
AI

=
ωc − iV0

ω + ω̃ + iV0
and 1−R =

4ωω̃

(ω + ω̃)2 + V 2
0

. (3)
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2. Superradiance in a flowing fluid
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Fluid flows

Visser ’98 [paraphrased]

If a fluid is barotropic and inviscid, and the flow is
irrotational then the equation governing the potential ψ
for linearized perturbations in the flow (i.e. δv = −∇ψ),
is identical to a Klein-Gordon equation for a massless
scalar field on a Lorentzian geometry. The effective
metric for the geometry, gµν , is determined by the fluid’s
properties and the background flow.
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Fluid flows

Consider an ideal fluid, which is vorticity-free, barotropic and
inviscid, and flowing with a local velocity v0(t,x)

Consider small perturbations (i.e. sound waves) in the flow,
v = v0 + δv where δv = −∇Φ.

The linearized Navier-Stokes equations imply that the velocity
potential Φ is governed by a Klein-Gordon equation

□gΦ = 0

on an effective spacetime with line element

ds2 = −dt2 + (dx− v0dt)
2

(Here I have set cs = 1, ρ = 1).
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Fluid flows: the draining bathtub

A nice example is the draining bathtub: a 2D flow with velocity

v0 = −D
r
r̂+

C

r
ϕ̂

C = Circulation rate, D = Draining rate.

Ergoregion: The flow speed exceeds the speed of sound for
r < re ≡

√
C2 +D2.

Horizon: The radial flow speed exceeds the speed for
r < rh ≡ D.

Line element:

ds2 = −dt2 +
(
dr +

Ddt

r

)2

+

(
rdϕ− Cdt

r

)2

.
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Exercise 1.2

ds2 = −dt2 +
(
dr +

Ddt

r

)2

+

(
rdϕ− Cdt

r

)2

1. Show that the inverse metric in the coordinates {t, r, ϕ} is

gµν = (g)µν , g =

−1 D
r − C

r2

· 1− D2

r2
CD
r3

· · 1−C2/r2

r2

 .

2. The Jacobian matrix of a coordinate transformation x̃µ(xν)
has components (J)µν ≡ ∂x̃µ

∂xν . Use a matrix of the form

J =

1 α 0
0 1 0
0 β 1


to find a transformation g̃ ≡ J g JT such that g̃t̃r = g̃rϕ̃ = 0.
Find α and β (which are functions of r).
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Exercise 1.2 (ctd)

3. Show that in the new coordinate system

g̃µν =

−1/f(r) 0 − C
r2f(r)

· f(r) 0

· · 1−r2e/r
2

r2f(r)

 , f(r) ≡ 1− D2

r2
.

4. Starting with the Klein-Gordon equation in the new coordinate
system {t̃, r, ϕ̃},

□Φ ≡ 1√
−g

∂µ
(√

−ggµν∂νΦ
)
= 0,

and using the separation of variable Φ(xµ) = 1√
r
Φ(r)e−iωt̃+imϕ̃,

derive the radial equation{
d2

dx2
+ (ω − φ(r))2 − V (r)

}
Φ = 0,

where dx/dr = 1/f , φ = Cm/r2, V (r) = f(r)
[
(m2−1/4)

r2
+ 5D2

4r4

]
.
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The Draining Bathtub

φ(r) = Cm/r2 ⇒ ωc = mΩH where ΩH ≡ C/D2 is the angular
velocity of the horizon at rh = D.

Superradiance occurs for 0 < ω < ωc.

Tortoise coordinate: dx/dr = 1/f(r) ⇒
x = r −D tanh−1(D/r).

Asymptotics: r → ∞ : x→ +∞, r → rh : x→ −∞.

Potentials as a function of x:
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Superradiance for a draining bathtub
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m = 1 mode. Here B = C (circulation rate) and D = 1.
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Absorption by a draining bathtub: null geodesics
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Wave scattering by a draining bathtub
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Wave scattering by a draining bathtub
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Time-independent scattering: theory

Figure: from SRD, Luis Crispino & Ednilton Oliveira (PLB, 2011).

A modified version of the Aharonov-Bohm effect.
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Time-independent scattering: experiment

Figure: Nottingham wave tank experiment. Fig. 1 from Torres, Patrick,
Coutant, Richartz, Tedford, and Weinfurtner, Nature Physics 13, 833 (2017).
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Superradiance in a wave tank

Figure: Reflection coefficients for different values of m, for the frequency
f = 3.7Hz. Fig 3 from Torres et al (2017).
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River model of black holes [Hamilton & Lisle 04]

Imagine a ‘spacetime flow’ with local
velocity v

ds2 = −c2dt2 + (dx− vdt)2

Ergoregion where |v| ≥ c

Apparent horizon where |r̂ · v| > c

Painlevé-Gullstrand coords for Schw.

v = −
√

2M

r
r̂

But, to describe rotating BH in this
model also need local ‘twist’ bivector.

cf. Lapse and shift
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3. Superradiance from a charged black hole
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Charged black holes and scalar fields

The Reissner-Nordström black hole is a solution to the
electrovacuum field equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , ∇νF

µν = 0, ∇[µFνσ] = 0,

with Tµν = FµσF
σ

ν − 1
4gµνFσλF

σλ.

The electrostatic potential is Aµ = [Q/r, 0, 0, 0].

The line element is

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2, dΩ2 = dθ2 + sin2 θdϕ2,

where

f(r) = 1− 2M

r
+
Q2

r2
.

Horizons where f(r) = 0, at r± =M +
√
M2 −Q2.
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Charged black holes and scalar fields

A (test) scalar field Φ with charge q satisfies the field equation

(∇µ + iqAµ) (∇µ + iqAµ) Φ = 0.

Exercise 1.3

Show that the above equation with the separation of variables
Φ = 1

ru(r)Yℓm(θ, ϕ) leads to the radial equation{
d2

dx2
+ (ω − qQ/r)2 − V (r)

}
u = 0

where dx/dr = 1/f(r) and

V (r) = f(r)

(
ℓ(ℓ+ 1)

r2
+
f ′(r)

r

)
.
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Superradiance

φ(r) = qQ/r2, V (r) = f(r)

(
ℓ(ℓ+ 1)

r2
+
f ′(r)

r

)
.

Superradiance for 0 < ω < ωc where ωc = qQ/r+.

The black hole loses mass and charge into the field.

“But I thought nothing could come out of a black hole??”
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4. Superradiance and the laws of black hole mechanics
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The laws of black hole mechanics

A stationary black hole in electrovacuum is described by just three
quantities: M , J , Q.

1973 Four Laws of Black Hole Mechanics.
Bardeen, Carter, & Hawking:

1 First Law:
dM =

κ

8π
dA+ΩdJ +ΦdQ,

2 Second Law: dA ≥ 0.

3 Third Law: It is impossible by any procedure, no matter how
idealized, to reduce κ to zero by a finite sequence of operations.

4 Zeroth Law: The surface gravity κ of a stationary black hole is
constant over the event horizon.

Here A is the area of the black hole horizon, κ is surface gravity, Ω
is its angular frequency, and Φ is its electrostatic potential.
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Thermodynamics?

Bardeen, Carter & Hawking (1973)

“It can be seen that κ/8π is analogous to temperature in the same way that

A is analogous to entropy. It should however be emphasized that κ/8π and

A are distinct from the temperature and entropy of the black hole.”

1976 Hawking radiation (GR + QFT). Black holes radiate
like a black body with a temperature

TH =
ℏκ

2πkBc

First Law:

c2dM =

(
ℏ

2πkBc
κ

)
d

(
kBc

3

Gℏ
A

4

)
+ΩdJ +ΦdQ

dU = T dS − pdV + µdN.

Horizon area A ⇔ Entropy S?

Sam Dolan (Sheffield) Superradiance 1st July 2024 37 / 50



Thermodynamics?

Bardeen, Carter & Hawking (1973)

“It can be seen that κ/8π is analogous to temperature in the same way that

A is analogous to entropy. It should however be emphasized that κ/8π and

A are distinct from the temperature and entropy of the black hole.”

1976 Hawking radiation (GR + QFT). Black holes radiate
like a black body with a temperature

TH =
ℏκ

2πkBc

First Law:

c2dM =

(
ℏ

2πkBc
κ

)
d

(
kBc

3

Gℏ
A

4

)
+ΩdJ +ΦdQ

dU = T dS − pdV + µdN.

Horizon area A ⇔ Entropy S?

Sam Dolan (Sheffield) Superradiance 1st July 2024 37 / 50



Thermodynamics?

Bardeen, Carter & Hawking (1973)

“It can be seen that κ/8π is analogous to temperature in the same way that

A is analogous to entropy. It should however be emphasized that κ/8π and

A are distinct from the temperature and entropy of the black hole.”

1976 Hawking radiation (GR + QFT). Black holes radiate
like a black body with a temperature

TH =
ℏκ

2πkBc

First Law:

c2dM =

(
ℏ

2πkBc
κ

)
d

(
kBc

3

Gℏ
A

4

)
+ΩdJ +ΦdQ

dU = T dS − pdV + µdN.

Horizon area A ⇔ Entropy S?

Sam Dolan (Sheffield) Superradiance 1st July 2024 37 / 50



Entropy

Bekenstein-Hawking entropy:

S =
kBc

3

Gℏ
A

4
≈ 1054

(
M

M⊙

)2

JK−1.

A Universe whose entropy is dominated by black holes!

Object Entropy (in JK−1)

The Sun ∼ 1035

BH(Sol) ∼ 1054

BH(Sag A*) ∼ 1067 .

GW150914: merger of two black holes: 36 + 29 → 62 + 3.
This created an entropy 1.7 · 1022 times that in our Sun.

Should we believe this?
What are the microstates of the black hole?
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Superradiance from black hole mechanics

First law:
dM =

κ

8π
dA+ΩdJ +ΦdQ.

Rearranging,

⇒ dA =
8π

κ

(
1− Ω

dJ

dM
− Φ

dQ

dM

)
dM.

Second law: dA ≥ 0. Third law: κ > 0.

If the quantity in brackets is negative, then dM ≤ 0
(i.e. superradiance).

For a (mode of a) field of frequency ω > 0, charge q and azimuthal
angular momentum number m, one can replace dJ/dM = m/ω
and dQ/dM = q/ω. The condition for superradiance becomes

0 < ω < ωc, ωc ≡ mΩ+ qΦ.
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5. Spinning black holes and the Penrose process
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Kerr spacetime

A timelike geodesic around a Kerr black
hole.

Image: Black Hole Perturbation Toolkit

(bhptoolkit.org).

Astrophysical black holes are unlikely to be significantly charged,
but those formed in binaries are likely to be rotating.

Characterised by the spin parameter a ≡ J/M .

a = 0 ⇒ Schwarzschild BH.

a =M ⇒ Extremal BH (κ→ 0).

Cosmic censorship: singularities are hidden by event horizons
⇒ −M < a < M .
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Symmetries of Kerr spacetime

horizon

ergoregion

photon orbit
zone

a = 0.8M

æ ææ æ

2 4

-3

-1

1

3

Stationary and axisymmetric ⇒
Two Killing vectors: ∇(µXν) = 0.
Conserved energy E = −Xµ

(t)uµ and

az. angular momentum L = Xµ
(ϕ)uµ.

Killing tensor ∇(µKνσ) = 0
⇒ Carter constant K ≡ Kµνu

µuν

⇒ Geodesic motion is integrable.

Commuting operators:
[Xµ∇µ,□] = 0
[∇µK

µν∇ν ,□] = 0.
Separability of wave equations.
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Stationary limit surface and ergoregion

The stationary limit surfaceis a surface on which the
time-translation Killing vector Xµ

(t) = [1, 0, 0, 0] is null

XµXµ = 0.

Inside the SL surface is the ergoregion in which Xµ
(t) is

spacelike.

Inside the ergoregion, all timelike worldlines have dϕ/dτ > 0, i.e.,
motion is in the same direction as the spin of the BH.

For a spinning black hole, the ergoregion extends outside the
horizon at r+ =M +

√
M2 − J2 to the SL surface at r = 2M .
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The Penrose process

Exercise 1.4

Two vectors Aµ and Bµ are defined at a point in a Lorentzian
spacetime. Show that:

If Aµ and Bµ are both timelike & future-pointing, then AµBµ < 0.

If Aµ is timelike f-p and Bµ is spacelike then AµBµ can take either
sign.

The energy E of a particle with a timelike tangent vector uµ is
defined as E ≡ −Xµ

(t)uµ.

Hence, inside the ergoregion – where Xµ
(t) is spacelike – particles

can have negative energies.

A Penrose process takes advantage of this fact to extract energy
from the black hole.
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The Penrose process

Suppose a particle, coming from infinity, enters the ergoregion of a
black hole.

Particle 1 now fissions into two particles, A and B.
Suppose particle A has negative energy.

Particle A cannot leave the ergosphere. But particle B can escape
to infinity. (It is necessary to show that this can be achieved).

By conservation of energy,

E1 = EA + EB ⇒ EB = E1 − EA.

Since EA < 0, the escaping particle (B) has more energy than the
incident particle (1).

In a Penrose process, energy is extracted from the black hole.

The Penrose process is the particle version of superradiance for
waves.
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6. Scalar fields on Kerr spacetime
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Scalar field on Kerr spacetime

Let’s consider a scalar field with a mass µ, governed by the
Klein-Gordon equation

□Φ− µ2Φ = 0.

This equation is separable on Kerr spacetime (Brill et al 1972),
despite the lack of spherical symmetry.

We will use Boyer-Lindquist coordinates {t, r, θ, ϕ}, and the
inverse metric in the form

gµν =
1

Σ

(
∆l

(µ
+ l

ν)
− +m

(µ
+m

ν)
−

)
.

Here {lµ+, l
µ
−,m

µ
+,m

µ
−} is a complex null tetrad, such that lµ± align

with the principal null directions of the spacetime.
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Scalar field on Kerr spacetime: separability

gµν =
1

Σ

(
∆l

(µ
+ l

ν)
− +m

(µ
+m

ν)
−

)
lµ± and ∆ are functions of r only, and lr± = 1, lθ± = 0.

mµ
± are functions of θ only, and mθ

± = 1, mr
± = 0.

Here Σ = r2 + a2 cos2 θ and the metric determinant is given by√
−g = sin θΣ.

Exercise 1.5

Using the above, show that □Φ− µ2Φ = 0 is equivalent to{
D∆D† +D†∆D − 2µ2r2

}
Φ+

{
L1L†

0 + L†
1L0 − 2µ2a2 cos2 θ

}
Φ = 0

with D = lµ+∂µ, D† = lµ−∂µ, L
†
n = mµ

+∂µ + n cot θ, Ln = mµ
−∂µ + n cot θ.
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Scalar field on Kerr spacetime: separability

With the previous result we have a separation of variables

Φ = R(r)S(θ)e−iωt+imϕ

with some angular eigenvalue λ such that

1

2

{
L1L†

0 + L†
1L0 − 2µ2a2 cos2 θ

}
S(θ) = −λS(θ).

The null tetrad is

lµ± =

[
±r

2 + a2

∆
, 1, 0,± a

∆

]
mµ

± =

[
±ia sin θ, 0, 1,± i

sin θ

]
,

where ∆ = r2 − 2Mr + a2 = (r − r+)(r − r−).
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Scalar field on Kerr spacetime: separability

Exercise 1.6

1 Show that, when acting on a harmonic function ∝ e−iωt+imϕ, the
derivative operators are D = ∂r − iK/∆ and D† = ∂r + iK/∆,
where K ≡ ωR2 − am and R2 ≡ r2 + a2.

2 Hence show that the radial equation is{
∆∂r∆∂r +K2 −∆(λ+ µ2r2)

}
R(r) = 0.

3 By defining R(r) = u(r)/R, show that the radial equation takes
the canonical form{

d2

dx2
+

(
ω − am

r2 + a2

)2

− V (r)

}
u(r) = 0,

where dx/dr = (r2 + a2)/∆ and V (r) is a function that you should
determine.
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