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Superradiance

“Superradiance is a radiation enhancement process
that involves dissipative systems.”

Richard Brito - Vitor Cardoso - Paolo Pani

Superradiance

New Frontiers in Black Hole Physics

Second Edition
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Overview

@ A toy model for superradiance

© Superradiance in a flowing fluid
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Overview

A toy model for superradiance

Superradiance in a flowing fluid

Superradiance from a charged black hole

© ©6 0 0

Superradiance and the laws of black hole
mechanics T

s>

©

Spinning black holes and the Penrose process 8 E

©

Scalar fields on Kerr spacetime.
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1. A toy model for superradiance
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A Toy Model

A 1D scattering problem:

T
NV AVAVE VA VAN

_/

Sam Dolan (Sheffield) Superradiance 1st July 2024

5/50



A Toy Model

e Consider a scalar field ® of charge ¢ in an electromagnetic
four-potential A, in Minkowski spacetime
77W = dlag [_17 +17 +17 +1]a
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A Toy Model

e Consider a scalar field ® of charge ¢ in an electromagnetic
four-potential A, in Minkowski spacetime
n* = diag [—1,+1,+1, +1], with some additional potential V (z*),

(Ou +iqA) "™ (0 +iqA,) & — V()P = 0.
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A Toy Model

e Consider a scalar field ® of charge ¢ in an electromagnetic
four-potential A, in Minkowski spacetime
n* = diag [—1,+1,+1, +1], with some additional potential V (z*),

(Ou +iqA) "™ (0 +iqA,) & — V()P = 0.

@ Let’s make this as simple as possible:
o A static electric potential: A, = [¢(x), 0]
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A Toy Model

e Consider a scalar field ® of charge ¢ in an electromagnetic
four-potential A, in Minkowski spacetime
n* = diag [—1,+1,+1, +1], with some additional potential V (z*),

(Ou +iqA) "™ (0 +iqA,) & — V()P = 0.

@ Let’s make this as simple as possible:
o A static electric potential: A, = [¢(x), 0]
o A monochromatic mode of the field: ®(z#) = ®(x)e~ L.

{7+ @ - 0p0)’ ~ Ve } ax) =0
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A Toy Model

e Consider a scalar field ® of charge ¢ in an electromagnetic
four-potential A, in Minkowski spacetime
n* = diag [—1,+1,+1, +1], with some additional potential V (z*),

(Ou +iqA) "™ (0 +iqA,) & — V()P = 0.

@ Let’s make this as simple as possible:
o A static electric potential: A, = [¢(x), 0]
o A monochromatic mode of the field: ®(z#) = ®(x)e~ L.

{V2+ (- apx)’ - Vi) } ox) = 0.
e A 1D system:

{4 e - V) o) =0
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A Toy Model

@ 1D scattering problem:

2
{2+ 0 a6l@)? - Vi) #(0) =

o Asymptotic regions:
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d2
{2+ 0 a6l@)? - Vi) #(0) =
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A Toy Model

@ 1D scattering problem:

2
{2+ 0 a6l@)? - Vi) #(0) =

e Asymptotic regions: Assume that

e Asymptotic solutions:
T — +00: O (z) = exp (FHiwz),
T — —00: O (z) = exp (Hiwz) .

e Here w = w — w, with w. = qyg.
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A Toy Model

A 1D scattering problem:

-
S NAVAVAVAVAN

_/

d_(z) = Br oW O (x) = Az eIt L A 9T

W=w— qpo.
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A Toy Model

2
{4 el = Vi) p o) =

o If ®; and P, are solutions to the above equation, then their

Wronskian . .
2 1
W (e, ®o] = ‘1917 —Py—— In

is constant, i.e., independent of x.
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A Toy Model

2
{4 el = Vi) p o) =

o If ®; and P, are solutions to the above equation, then their
Wronskian . .
2 1
W|®,, P b— -0
(@1, Po] = @y I 2
is constant, i.e., independent of x.
o If ® is a solution then ®* is also a solution, because the potentials

¢ and V(x) are real.
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A Toy Model

2
{4 el = Vi) p o) =

o If ®; and P, are solutions to the above equation, then their
Wronskian . .
2 1
P, b— -
WDy, Po] = &y dr 2

is constant, i.e., independent of x.

If @ is a solution then ®* is also a solution, because the potentials
¢ and V(x) are real.

Evaluating W[®, ®*] in the limits © — co and x — —o0,

~i3|Brl? = —iw (|Az] — |4 )

@ Hence
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A Toy Model

2
{4 el = Vi) p o) =

o If ®; and P, are solutions to the above equation, then their
Wronskian . .
2 1
P, b— -
WDy, Po] = &y dr 2

is constant, i.e., independent of x.

If @ is a solution then ®* is also a solution, because the potentials
¢ and V(x) are real.

Evaluating W[®, ®*] in the limits © — co and x — —o0,

~i3|Brl? = —iw (|Az] — |4 )

@ Hence
Az |? Br|?
Az Az
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A Toy Model

R=1--T W=w—qpo

@ Here the transmission coefficient 7 > 0 by definition.
Let’s assume 7 > 0.
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A Toy Model

Rzl—gT W=w — qpo
w

@ Here the transmission coefficient 7 > 0 by definition.
Let’s assume 7 > 0.

o If W/w > 0 then we have partial reflection: R < 1.
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A Toy Model

R=1--T W=w—qpo

@ Here the transmission coefficient 7 > 0 by definition.
Let’s assume 7 > 0.

o If W/w > 0 then we have partial reflection: R < 1.
o If w =0 then total reflection: R =1.
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A Toy Model

Rzl—gT W=w — qpo
w

@ Here the transmission coefficient 7 > 0 by definition.
Let’s assume 7 > 0.

o If W/w > 0 then we have partial reflection: R < 1.
o If w =0 then total reflection: R =1.
o If W/w < 0 then superradiance: R > 1.
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Exercise 1.1

Consider a special case of the toy model with a step-change in the
electric potential and delta-function barrier:

p(x) = po O(—x), V(z) =Vpo(x)
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Exercise 1.1

Consider a special case of the toy model with a step-change in the
electric potential and delta-function barrier:

p(x) = o O(—x), Vi(z) =Vyd(x)
The scattering solution is:
B(z) = P (2)O(—2z) + B (2)O(x), S = Bre 7

o, = Are ™% 4 Apetivr
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Exercise 1.1

Consider a special case of the toy model with a step-change in the
electric potential and delta-function barrier:

p(x) = o O(—x), Vi(z) =Vyd(x)
The scattering solution is:
B(z) = P (2)O(—2z) + B (2)O(x), S = Bre 7

o, = Are ™% 4 Apetivr

@ By putting the solution into the differential equation, show that
A7+ Ar = By (1)
w (A7 — Ag) = @ +iVp) Br. (2)
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Exercise 1.1

Consider a special case of the toy model with a step-change in the
electric potential and delta-function barrier:

p(x) = o O(—x), Vi(z) =Vyd(x)
The scattering solution is:
B(z) = P (2)O(—2z) + B (2)O(x), S = Bre 7

o, = Are ™% 4 Apetivr

@ By putting the solution into the differential equation, show that

A7+ Ar = By (1)
w(Az — Ag) = (@ + V) Br. 2)
© Hence show that
Axr we — 1V 4ww
A wH+w+il o (w+ )2+ VE 3)
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2. Superradiance in a flowing fluid
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Fluid flows

Visser 98 [paraphrased)|

If a fluid is barotropic and inviscid, and the flow is
irrotational then the equation governing the potential
for linearized perturbations in the flow (i.e. ov = —V)),
is identical to a Klein-Gordon equation for a massless
scalar field on a Lorentzian geometry. The effective
metric for the geometry, g,., is determined by the fluid’s
properties and the background flow.

v
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Fluid flows

e Consider an ideal fluid, which is vorticity-free, barotropic and
inviscid, and flowing with a local velocity vo(t, x)

e Consider small perturbations (i.e. sound waves) in the flow,
v = vg + 0v where v = —Vo.
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Fluid flows

e Consider an ideal fluid, which is vorticity-free, barotropic and
inviscid, and flowing with a local velocity vo(t, x)

e Consider small perturbations (i.e. sound waves) in the flow,
v = vg + 0v where v = —Vo.

o The linearized Navier-Stokes equations imply that the velocity
potential ® is governed by a Klein-Gordon equation

0,® =0

on an effective spacetime
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Fluid flows

e Consider an ideal fluid, which is vorticity-free, barotropic and
inviscid, and flowing with a local velocity vo(t, x)

e Consider small perturbations (i.e. sound waves) in the flow,
v = vg + 0v where v = —Vo.

o The linearized Navier-Stokes equations imply that the velocity
potential ® is governed by a Klein-Gordon equation

Oy® =0
on an effective spacetime with line element
ds? = —dt* + (dx — vodt)*

(Here I have set ¢s =1, p=1).
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Fluid flows: the draining bathtub

@ A nice example is the draining bathtub: a 2D flow with velocity

D, C,
vo=——T+—¢
r r

e C = Circulation rate, D = Draining rate.
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Fluid flows: the draining bathtub

@ A nice example is the draining bathtub: a 2D flow with velocity

D. C.
t+—¢

Vo= ——TI+
r r

e C = Circulation rate, D = Draining rate.

e Ergoregion: The flow speed exceeds the speed of sound for

r<re=+vV0?%+ D2
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Fluid flows: the draining bathtub

@ A nice example is the draining bathtub: a 2D flow with velocity

D, C,
vo=——T+—¢
r r

e C = Circulation rate, D = Draining rate.

Ergoregion: The flow speed exceeds the speed of sound for

r<Te= VC? + D2

e Horizon: The radial flow speed exceeds the speed for
r<rp=D.
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Fluid flows: the draining bathtub

@ A nice example is the draining bathtub: a 2D flow with velocity

D, C,
vo=——T+—¢
r r

e C = Circulation rate, D = Draining rate.
Ergoregion: The flow speed exceeds the speed of sound for
r<re=+vC?+ D2

e Horizon: The radial flow speed exceeds the speed for
r<rp=D.

@ Line element:

2 2
ds® = —dt? + (dr + Drdt> + <rd¢ - Crdt> )
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Exercise 1.2

2 2
ds® = —dt® + <dr + Ddt) + (rdqs — Cdt)
T T

1. Show that the inverse metric in the coordinates {¢,r, ¢} is

—1 D _C
2 v
D CD
g =", a=| - 1-= =5
1702/7‘2
2
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Exercise 1.2

2 2
ds® = —dt® + <dr + Ddt) + (rdqs — Cdt)
T T

1. Show that the inverse metric in the coordinates {¢,r, ¢} is

—1 D _C

" p? 0152

g =", 9= - 1-= =5
1702/7‘2

7'2

2. The Jacobian matrix of a coordinate transformation z#(z")

has components (3)“ = gi‘:. Use a matrix of the form

1 o O
=10 1 0
0 B 1
to find a transformation g = J gij such that ﬁf’” = @T‘g’ =0.

Find « and 8 (which are functions of 7).
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Exercise 1.2 (ctd)

3. Show that in the new coordinate system

“1/f(r) 0 —afy D2

SpY . 0 =1 - —

g f(r) e flr)=1-—3
' 2 f(r)
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Exercise 1.2 (ctd)

3. Show that in the new coordinate system

“1f(r) 0 —nfy

Sy . 0 =1 - —

J fo 0] fm=1-T
' r2f(r)

4. Starting with the Klein-Gordon equation in the new coordinate
system {t,r, ¢},
1
0o = ﬁaﬂ (vV—=99"9,®) =0,
and using the separation of variable ®(z#) = #@(T)e*mgﬂmg’,
derive the radial equation

(v —pmr-vife-o

da?

where dx/dr = 1/f, o = Cm/r?, V(r) = f(r) [(m2—1/4) + 541:; _

r2
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The Draining Bathtub

o o(r) =Cm/r? = w. = mQy where Qy = C/D? is the angular
velocity of the horizon at rp, = D.
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The Draining Bathtub

o o(r) =Cm/r? = w. = mQy where Qy = C/D? is the angular
velocity of the horizon at rp, = D.

e Superradiance occurs for 0 < w < we.
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The Draining Bathtub

o o(r) = Cm/r? = w. = mQy where Qy = C/D? is the angular
velocity of the horizon at rp, = D.
e Superradiance occurs for 0 < w < we.

e Tortoise coordinate: dz/dr =1/f(r) =
z=r— Dtanh~1(D/r).
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The Draining Bathtub

o(r) = Cm/r? = w. = mQy where Qg = C/D? is the angular
velocity of the horizon at rp, = D.

Superradiance occurs for 0 < w < we.
Tortoise coordinate: dx/dr =1/f(r) =
z=r— Dtanh~1(D/r).

Asymptotics: r — 00 : x — 400, T —Th 1T —> —00.
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The Draining Bathtub

o p(r) =Cm/r* = w. = mQy where Qy = C/D? is the angular
velocity of the horizon at r, = D.

e Superradiance occurs for 0 < w < we.
e Tortoise coordinate: dz/dr =1/f(r) =
z=r— Dtanh~1(D/r).
e Asymptotics: r — o0 : x — +00, r—TpIT —> —00.
o Potentials as a function of z:

0.35F 1op
0.30F 08

0.25¢

N 0.20F s

0.15¢ 0.4

0.10F
0.2

0.05¢

0.00F; 0.0

-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
X X
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Superradiance for a draining bathtub

00 W o m w4
W

Reflection Coefficient

or,

e m =1 mode. Here B = C (circulation rate) and D = 1.
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Absorption by a draining bathtub: null geodesics

y/ID

4 2 0 2 4
x/D
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Wave scattering by a draining bathtub

10 1
08
5 _ 06
-4 04
-4 02
0 — i
-4 0
- 0.2
-5 + E
-0.4
-0.6
10 | | |
-10 -5 0 5 10
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Wave scattering by a draining bathtub

10 1
08
5 _ 06
-4 04
-4 02
0 — —
-4 0
- 0.2
-5 + —1
-0.4
-0.6
10 | | |
-10 -5 0 5 10
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Wave scattering by a draining bathtub
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Wave scattering by a draining bathtub
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Wave scattering by a draining bathtub

10
5 [ —
1
0+ ‘ .
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Wave scattering by a draining bathtub
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Time-independent scattering: theory

af effect on a draining vortex, ¢ =4.0, f=1

Figure: from SRD, Luis Crispino & Ednilton Oliveira (PLB, 2011).

A modified version of the Aharonov-Bohm effect.
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Time-independent scattering: experiment

Figure: Nottingham wave tank experiment. Fig. 1 from Torres, Patrick,
Coutant, Richartz, Tedford, and Weinfurtner, Nature Physics 13, 833 (2017).
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Superradiance in a wave tank

* With vortex
O Without vortex

|

04

02+ %

0.0

-2 -1 0 1 2
m

Figure: Reflection coefficients for different values of m, for the frequency
f =3.7Hz. Fig 3 from Torres et al (2017).
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River model of black holes [Hamilton & Lisle 04]

o Imagine a ‘spacetime flow’ with local
velocity v

ds? = —dt? + (dx — vdt)?

e Ergoregion where |v| > ¢

e Apparent horizon where |t - v| > ¢

FIG. 1:  (Color online) The fish upstream can make way
against the current, but the fish downstream is swept to
the bottom of the waterfall. Figure 1 of® presents a similar
depiction.
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River model of black holes [Hamilton & Lisle 04]

o Imagine a ‘spacetime flow’ with local
velocity v

ds? = —dt? + (dx — vdt)?

Ergoregion where |v| > ¢

(]

Apparent horizon where |- v| > ¢

o Painlevé-Gullstrand coords for Schw.

FIG. 1:  (Color online) The fish upstream can make way
against the current, but the fish downstream is swept to
the bottom of the waterfall. Figure 1 of® presents a similar
depiction.
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River model of black holes [Hamilton & Lisle 04]

o Imagine a ‘spacetime flow’ with local
velocity v

ds? = —dt? + (dx — vdt)?

e Ergoregion where |v| > ¢
e Apparent horizon where |t - v| > ¢

o Painlevé-Gullstrand coords for Schw.

FIG. 1:  (Color online) The fish upstream can make way
against the current, but the fish downstream is swept to
the bottom of the waterfall. Figure 1 of® presents a similar
depiction.

e But, to describe rotating BH in this
model also need local ‘twist’ bivector.

o cf. Lapse and shift
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3. Superradiance from a charged black hole
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Charged black holes and scalar fields

@ The Reissner-Nordstrom black hole is a solution to the
electrovacuum field equations:

1 81G
R;w - §guuR = 7T,Lwa VP =0, V[,uFua} =0,

with T} = FuoF,% — 2 FonF.
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Charged black holes and scalar fields

@ The Reissner-Nordstrom black hole is a solution to the
electrovacuum field equations:

1 81G
R;w - §guuR = 7T,Lwa VP =0, V[,qua} =0,

with T} = FuoF,% — 2 FonF.
o The electrostatic potential is A, = [Q/r,0,0,0].

Sam Dolan (Sheffield) Superradiance 1st July 2024

32 /50



Charged black holes and scalar fields

@ The Reissner-Nordstrom black hole is a solution to the
electrovacuum field equations:

1 81G
R;w - §guuR = 7T,Lwa VP =0, V[,qua} =0,

with T} = FuoF,% — 2 FonF.
o The electrostatic potential is A, = [Q/r,0,0,0].

@ The line element is
ds* = —f(r)dt* + f 1 (r)dr® + r%dQ%, ~ dQ? = db* + sin® 0d¢?,

where
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Charged black holes and scalar fields

@ The Reissner-Nordstrom black hole is a solution to the
electrovacuum field equations:

1 81G
R;w - §guuR = 7T,Lwa VP =0, V[,qua} =0,

with T} = FuoF,% — 2 FonF.
o The electrostatic potential is A, = [Q/r,0,0,0].

@ The line element is
ds* = —f(r)dt* + f 1 (r)dr® + r%dQ%, ~ dQ? = db* + sin® 0d¢?,

where )
firy=1- M + Q—

2
r r
e Horizons where f(r) =0, at ro = M + /M? — Q2.
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Charged black holes and scalar fields

o A (test) scalar field ® with charge ¢ satisfies the field equation

(Vu+igA,) (VF +igAt) @ = 0.
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Charged black holes and scalar fields

o A (test) scalar field ® with charge ¢ satisfies the field equation

(Vyu+igqAy,) (VF +igAF) @ = 0.

Exercise 1.3

Show that the above equation with the separation of variables
® = Lu(r)Ye, (6, ¢) leads to the radial equation

(& +-am-vinfu=o

where dz/dr =1/ f(r) and

Vi) = £(r) <€(€+ L f’(?")) .

72 r
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Superradiance

o(r)=aQ/r, V()= f(r) (ﬁ(iﬁ 241 ()) .

e Superradiance for 0 < w < w, where w. = ¢Q /7.
@ The black hole loses mass and charge into the field.
e “But I thought nothing could come out of a black hole??”

Sam Dolan (Sheffield) Superradiance 1st July 2024

34 /50



4. Superradiance and the laws of black hole mechanics
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The laws of black hole mechanics

e A stationary black hole in electrovacuum is described by just three
quantities: M, J, Q.
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The laws of black hole mechanics

e A stationary black hole in electrovacuum is described by just three
quantities: M, J, Q.

e 1973 Four Laws of Black Hole Mechanics.
Bardeen, Carter, & Hawking:
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The laws of black hole mechanics

e A stationary black hole in electrovacuum is described by just three
quantities: M, J, Q.

e 1973 Four Laws of Black Hole Mechanics.
Bardeen, Carter, & Hawking:

@ First Law: .
dM = 8—dA + QdJ + ¢dQ,
T
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The laws of black hole mechanics

e A stationary black hole in electrovacuum is described by just three

quantities: M, J, Q.

e 1973 Four Laws of Black Hole Mechanics.
Bardeen, Carter, & Hawking:

@ First Law: .
dM = 8—dA + QdJ + ¢dQ,
T

© Second Law: dA > 0.
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The laws of black hole mechanics

e A stationary black hole in electrovacuum is described by just three
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The laws of black hole mechanics

e A stationary black hole in electrovacuum is described by just three
quantities: M, J, Q.

e 1973 Four Laws of Black Hole Mechanics.
Bardeen, Carter, & Hawking:

@ First Law: .
dM = 8—dA + QdJ + ¢dQ,
T

© Second Law: dA > 0.

© Third Law: It is impossible by any procedure, no matter how
idealized, to reduce k to zero by a finite sequence of operations.

@ Zeroth Law: The surface gravity « of a stationary black hole is
constant over the event horizon.

@ Here A is the area of the black hole horizon, x is surface gravity, Q2
is its angular frequency, and ® is its electrostatic potential.
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Thermodynamics?

Bardeen, Carter & Hawking (1973)

“It can be seen that x/87 is analogous to temperature in the same way that
A is analogous to entropy. It should however be emphasized that «/87 and
A are distinct from the temperature and entropy of the black hole.”
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Thermodynamics?

Bardeen, Carter & Hawking (1973)

“It can be seen that x/8 is analogous to temperature in the same way that
A is analogous to entropy. It should however be emphasized that «/87 and
A are distinct from the temperature and entropy of the black hole.”

e 1976 Hawking radiation (GR + QFT). Black holes radiate
like a black body with a temperature

hk

Ty —
H 2rkge

o First Law:
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Thermodynamics?

Bardeen, Carter & Hawking (1973)

“It can be seen that x/8 is analogous to temperature in the same way that
A is analogous to entropy. It should however be emphasized that «/87 and

A are distinct from the temperature and entropy of the black hole.”

e 1976 Hawking radiation (GR + QFT). Black holes radiate
like a black body with a temperature

_ hk
- 271kpe

Ty

o First Law:
h kped A
2dM = B2 4 QdJ + 0dQ
cd 27Tch/£ d Gh 4 +QdJ d
dU = T ds —pdV + pdN.

e Horizon area A <  Entropy S?
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Entropy

o Bekenstein-Hawking entropy:

_ch3A ~ 54 M 2 —1
S = Ch 1 ~ 10— | JK™.
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Entropy

o Bekenstein-Hawking entropy:

_ch3A 54 M 2 —1
S = Ch 1 ~ 10 M—@ JK™.

@ A Universe whose entropy is dominated by black holes!

Object ‘ Entropy (in JK!)
The Sun ~ 10%
BH(Sol) ~ 10%4

BH(Sag A*) | ~ 1057 .
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o Bekenstein-Hawking entropy:

_ch3A 54 M 2 —1
S = Ch 1 ~ 10 M—@ JK™.

@ A Universe whose entropy is dominated by black holes!

Object ‘ Entropy (in JK!)
The Sun ~ 10%
BH(Sol) ~ 105

BH(Sag A*) | ~ 1057 .

o GW150914: merger of two black holes: 36 + 29 — 62 + 3.
This created an entropy 1.7 - 1022 times that in our Sun.
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Entropy

o Bekenstein-Hawking entropy:

_ch3A 54 M 2 —1
S = Ch 1 ~ 10 M—@ JK™.

@ A Universe whose entropy is dominated by black holes!

Object ‘ Entropy (in JK!)
The Sun ~ 10%
BH(Sol) ~ 10%4

BH(Sag A*) | ~ 1057 .

o GW150914: merger of two black holes: 36 + 29 — 62 + 3.
This created an entropy 1.7 - 1022 times that in our Sun.

@ Should we believe this?
What are the microstates of the black hole?
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Superradiance from black hole mechanics

o First law: p
dM = S—dA + QdJ + ¢dQ.
T
Rearranging,
8 dJ d@
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Rearranging,
8 dJ d@

@ Second law: dA > 0. Third law: x > 0.
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Superradiance from black hole mechanics

o First law: p
dM = S—dA + QdJ + &dQ.

T
Rearranging,

@ Second law: dA > 0. Third law: x > 0.

e If the quantity in brackets is negative, then dM < 0
(i.e. superradiance).
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Superradiance from black hole mechanics

o First law: p
dM = S—dA + QdJ + &dQ.

T
Rearranging,

@ Second law: dA > 0. Third law: x > 0.
e If the quantity in brackets is negative, then dM < 0
(i.e. superradiance).
e For a (mode of a) field of frequency w > 0, charge ¢ and azimuthal

angular momentum number m, one can replace d.J/dM = m/w
and dQ/dM = q/w.
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Superradiance from black hole mechanics

o First law: p
dM = S—dA + QdJ + &dQ.

T
Rearranging,

@ Second law: dA > 0. Third law: x > 0.

e If the quantity in brackets is negative, then dM < 0
(i.e. superradiance).

e For a (mode of a) field of frequency w > 0, charge ¢ and azimuthal
angular momentum number m, one can replace d.J/dM = m/w
and d@Q/dM = q/w. The condition for superradiance becomes

0<w < we, we = M + qP. ‘
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5. Spinning black holes and the Penrose process
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Kerr spacetime

A timelike geodesic around a Kerr black
hole.

Image: Black Hole Perturbation Toolkit
(bhptoolkit.org).

e Astrophysical black holes are unlikely to be significantly charged,
but those formed in binaries are likely to be rotating.

e Characterised by the spin parameter a = J/M.
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A timelike geodesic around a Kerr black
hole.

Image: Black Hole Perturbation Toolkit
(bhptoolkit.org).

e Astrophysical black holes are unlikely to be significantly charged,
but those formed in binaries are likely to be rotating.

e Characterised by the spin parameter a = J/M.
a =0 = Schwarzschild BH.
e a = M = Extremal BH (x — 0).
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Kerr spacetime

A timelike geodesic around a Kerr black
hole.

Image: Black Hole Perturbation Toolkit
(bhptoolkit.org).

Astrophysical black holes are unlikely to be significantly charged,
but those formed in binaries are likely to be rotating.

Characterised by the spin parameter a = J/M.
a =0 = Schwarzschild BH.
a = M = Extremal BH (k — 0).

Cosmic censorship: singularities are hidden by event horizons
= -M<a<M.
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Symmetries of Kerr spacetime

Sam Dolan (Sheffield)

k “pHgton orbit .\
yone

a=0.8M

o Stationary and axisymmetric =
Two Killing vectors: V(,X,) = 0.
Conserved energy £ = —X (/;)“u and
az. angular momentum £ = X (‘;)uu.
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Symmetries of Kerr spacetime

Sam Dolan (Sheffield)

“pHgton orbit .\
yone

a=0.8M

o Stationary and axisymmetric =
Two Killing vectors: V(,X,) = 0.
Conserved energy £ = —X (/;)“u and
az. angular momentum £ = X (‘;)uu.

e Killing tensor V(, K5 =0
= Carter constant K = K, utu”
= Geodesic motion is integrable.
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Symmetries of Kerr spacetime

o Stationary and axisymmetric =
Two Killing vectors: V(,X,) = 0.
Conserved energy £ = —X (’;)uﬂ and

5 Fif\fﬁ‘)‘tonkorbit
yone az. angular momentum £ = X (“ o) Un-
L : e Killing tensor V(, K5 =0

[ 4 = Carter constant K = K, utu”

= Geodesic motion is integrable.

o Commuting operators:
(X*V,,00=0
[V, KMV, 00 = 0.

Separability of wave equations.
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Stationary limit surface and ergoregion

o The stationary limit surfaceis a surface on which the

time-translation Killing vector Xé) =[1,0,0,0] is null

X'X, = 0.

o Inside the SL surface is the ergoregion in which X é) is

spacelike.
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o The stationary limit surfaceis a surface on which the

time-translation Killing vector Xé) =[1,0,0,0] is null

X'X, = 0.

o Inside the SL surface is the ergoregion in which X é) is

spacelike.

e Inside the ergoregion, all timelike worldlines have d¢/dr > 0, i.e.,
motion is in the same direction as the spin of the BH.

Sam Dolan (Sheffield) Superradiance 1st July 2024 43 / 50



Stationary limit surface and ergoregion

o The stationary limit surfaceis a surface on which the
time-translation Killing vector Xé) =[1,0,0,0] is null
X'X,, =0.

o Inside the SL surface is the ergoregion in which X é) is

spacelike.

e Inside the ergoregion, all timelike worldlines have d¢/dr > 0, i.e.,
motion is in the same direction as the spin of the BH.

e For a spinning black hole, the ergoregion extends outside the
horizon at ry = M + v M?2 — J? to the SL surface at r = 2M.
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The Penrose process

Exercise 1.4

Two vectors A* and B* are defined at a point in a Lorentzian
spacetime. Show that:

o If A* and B* are both timelike & future-pointing, then A*B, < 0.

o If A* is timelike f-p and B* is spacelike then A*B,, can take either
sign.
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@ The energy &£ of a particle with a timelike tangent vector u* is
defined as £ = —Xé)uu.
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Two vectors A* and B* are defined at a point in a Lorentzian
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o If A* and B* are both timelike & future-pointing, then A*B, < 0.

o If A* is timelike f-p and B* is spacelike then A*B,, can take either
sign.
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defined as £ = —Xé)uu.

e Hence, inside the ergoregion — where X (’:) is spacelike — particles

can have negative energies.
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The Penrose process

Exercise 1.4

Two vectors A* and B* are defined at a point in a Lorentzian
spacetime. Show that:

If A* and B* are both timelike & future-pointing, then A*B,, < 0.

If A" is timelike f-p and B* is spacelike then A*B,, can take either
sign.

The energy £ of a particle with a timelike tangent vector u* is
defined as £ = —Xé)uu.

Hence, inside the ergoregion — where X (’:) is spacelike — particles

can have negative energies.

A Penrose process takes advantage of this fact to extract energy
from the black hole.
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The Penrose process

@ Suppose a particle, coming from infinity, enters the ergoregion of a
black hole.
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black hole.

e Particle 1 now fissions into two particles, A and B.
Suppose particle A has negative energy.
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The Penrose process

@ Suppose a particle, coming from infinity, enters the ergoregion of a
black hole.

e Particle 1 now fissions into two particles, A and B.
Suppose particle A has negative energy.

e Particle A cannot leave the ergosphere. But particle B can escape
to infinity. (It is necessary to show that this can be achieved).
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The Penrose process

@ Suppose a particle, coming from infinity, enters the ergoregion of a
black hole.

e Particle 1 now fissions into two particles, A and B.
Suppose particle A has negative energy.

e Particle A cannot leave the ergosphere. But particle B can escape
to infinity. (It is necessary to show that this can be achieved).

e By conservation of energy,
E1=Ex+E = Ep=& —€&a.

e Since £4 < 0, the escaping particle (B) has more energy than the
incident particle (1).
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The Penrose process

@ Suppose a particle, coming from infinity, enters the ergoregion of a
black hole.

e Particle 1 now fissions into two particles, A and B.
Suppose particle A has negative energy.

e Particle A cannot leave the ergosphere. But particle B can escape
to infinity. (It is necessary to show that this can be achieved).

e By conservation of energy,
E1=Ex+E = Ep=& —€&a.

e Since £4 < 0, the escaping particle (B) has more energy than the
incident particle (1).

@ In a Penrose process, energy is extracted from the black hole.

@ The Penrose process is the particle version of superradiance for

waves.
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6. Scalar fields on Kerr spacetime
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Scalar field on Kerr spacetime

o Let’s consider a scalar field with a mass u, governed by the
Klein-Gordon equation

0@ — 2@ = 0.

e This equation is separable on Kerr spacetime (Brill et al 1972),
despite the lack of spherical symmetry.
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Scalar field on Kerr spacetime

o Let’s consider a scalar field with a mass u, governed by the
Klein-Gordon equation

0@ — 2@ = 0.

e This equation is separable on Kerr spacetime (Brill et al 1972),
despite the lack of spherical symmetry.

e We will use Boyer-Lindquist coordinates {¢,r,6, ¢}, and the
inverse metric in the form

1 v v
gt = = (Al(flj + mfm)) .

e Here {I,1" m" m"} is a complex null tetrad, such that I align
with the principal null directions of the spacetime.
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Scalar field on Kerr spacetime: separability

1

p _
S

(Al + m{m?)

o I} and A are functions of r only, and I’, = 1, % = 0.
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Scalar field on Kerr spacetime: separability

1

p _
S

(Al + m{m?)

o I} and A are functions of r only, and I’, = 1, % = 0.

o m!l are functions of # only, and mf. = 1, m%, = 0.
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Scalar field on Kerr spacetime: separability

1

p _
S

(Algﬁ‘li) + m&“m?)
o [l and A are functions of r only, and I’y =1, 19 =o.
o m!l are functions of # only, and mf. = 1, m%, = 0.

o Here ¥ = r? 4 a? cos? § and the metric determinant is given by

v—g =sin6%.
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Scalar field on Kerr spacetime: separability

1

p _
S

(Algﬁ‘li) + m&“m?)
o [l and A are functions of r only, and I’y =1, 19 =o.
o m!l are functions of # only, and mf. = 1, m%, = 0.

o Here ¥ = r? 4 a? cos? § and the metric determinant is given by

v—g =sin6%.

Exercise 1.5

Using the above, show that O® — p?® = 0 is equivalent to

{DADT +DIAD - 2,u21"2} o+ {,clcg + L4 Lo — 2u2a? cos? 9} o =0

with D =149, DI =1"9,, ch = m! 9, +ncotf, L, =md, + ncoth.
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Scalar field on Kerr spacetime: separability

With the previous result we have a separation of variables
® = R(r)S(f)ewitime
with some angular eigenvalue A\ such that
1
5 {clz:g + £1Lo — 2u%a? cos? 9} S(8) = —AS(6).

The null tetrad is

2 2
r“+a a
W = |£+— 1,0,+—
=+ |: A s L9 Yy A:|
mh = [iiasinﬁ,o,l,:lz,z},
sin

where A =72 —2Mr 4 a® = (r —ry)(r —r_).
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Scalar field on Kerr spacetime: separability

Exercise 1.6

@ Show that, when acting on a harmonic function o< e~ m® the
derivative operators are D = 0, — iK/A and D = 0, +iK/A,
where K = wR? —am and R? =7r% + a2

© Hence show that the radial equation is
{AD, A0, + K* — AN+ p?r®)} R(r) = 0.

@ By defining R(r) = u(r)/MR, show that the radial equation takes
the canonical form

{dd; N <w_ %)2 —V(r)}u(r) —0,

where dz/dr = (r? + a?)/A and V(r) is a function that you should
determine.
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