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Overview

1 Key paper: “Floating Orbits, Superradiant
Scattering and the Black-hole Bomb”

2 Toy model with a mirror.

3 Quasi-bound states of the Kerr black hole.

4 Massive (dark) photons and gravitons?

5 Black holes as particle detectors: proposals.
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Instabilities

Superradiance + Confinement ⇒ Instability
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1. “Floating Orbits, Superradiant Scattering and the
Black-hole Bomb”

W. H. Press and S. A. Teukolsky, Nature 238, 211 (1972).
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Key paper (1972)
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Key paper
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Floating orbits?

Floating orbit ⇔ ratio of fluxes Φh/Φ∞ = −1

The m = ℓ = min(1, |s|) mode dominates the radiation.

Sam Dolan (Sheffield) Superradiant Instabilities 1st July 2024 7 / 45



Floating orbits?

Insufficient superradiant flux to balance the radiation at infinity.

Floating orbits do not arise.
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A black hole bomb?

Press and Teukolsky 1972

“To illustrate, in a rather speculative vein, we propose the
black hole bomb: locate a rotating black hole and construct
a spherical mirror around it. The mirror must reflect
low-frequency radio waves with reflectivity ≳ 99.8%, so that in
one reflexion and subsequent superradiant scattering there is a
net amplification. The system is then unstable against a
numer of exponentially growing electromagnetic modes which
will be initiated by random “seed fields” (thermal noise).

“Others may care to speculate on the possibility that nature

provides her own mirror. The amplified wave frequencies

are far below the plasma frequency of the interstellar medium,

so that waves would reflect off the boundary of an evacuated

cavity surrounding the hole.”
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2. A toy model with a mirror
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A Toy Model

Recall from Lecture 1 the toy model problem with the step in the
electric potential, and a delta-function barrier:{

d2

dx2
+ (ω − qφ(x))2 − V (x)

}
Φ(x) = 0.

φ(x) = φ0Θ(−x), V (x) = V0 δ(x).

We derived that

α ≡ AR
AI

=
ωc − iV0

ω + ω̃ + iV0

where ω̃ = ω − ωc with ωc ≡ qφ0.
Now let’s put a mirror at x = x0 > 0.

Sam Dolan (Sheffield) Superradiant Instabilities 1st July 2024 11 / 45



A Toy Model

Recall from Lecture 1 the toy model problem with the step in the
electric potential, and a delta-function barrier:{

d2

dx2
+ (ω − qφ(x))2 − V (x)

}
Φ(x) = 0.

φ(x) = φ0Θ(−x), V (x) = V0 δ(x).

We derived that

α ≡ AR
AI

=
ωc − iV0

ω + ω̃ + iV0

where ω̃ = ω − ωc with ωc ≡ qφ0.

Now let’s put a mirror at x = x0 > 0.

Sam Dolan (Sheffield) Superradiant Instabilities 1st July 2024 11 / 45



A Toy Model

Recall from Lecture 1 the toy model problem with the step in the
electric potential, and a delta-function barrier:{

d2

dx2
+ (ω − qφ(x))2 − V (x)

}
Φ(x) = 0.

φ(x) = φ0Θ(−x), V (x) = V0 δ(x).

We derived that

α ≡ AR
AI

=
ωc − iV0

ω + ω̃ + iV0

where ω̃ = ω − ωc with ωc ≡ qφ0.
Now let’s put a mirror at x = x0 > 0.

Sam Dolan (Sheffield) Superradiant Instabilities 1st July 2024 11 / 45



Toy model with a mirror

Travelling wave Standing wave

Potential

Barrier

ω ω̃ > 0

ω ω̃ < 0

'Mirror'
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Toy model with a mirror

α ≡ AR
AI

=
ωc − iV0

ω + ω̃ + iV0

Mirror ⇒ Dirichlet boundary condition: Φ(x0) = 0.

AIe
−iωx0 +ARe

+iωx0 = 0 ⇒ α = −e−2iωx0 .

The frequency is now complex: ω = ωr + i ωi

For a high barrier, V0 ≫ ωr, then α ≈ −1 and so

e−2iωrx0 ≈ 1 ⇒ ωr ≈
πn

x0
, n ∈ Z
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A Toy Model

We can also derive an expression for the imaginary part of the
frequency ωi, which determines the growth/decay rate.

R ≡ |α|2 =
V 2
0 + ω2

c

(V0 + 2ωi)2 + (2ωr − ωc)2
= exp (4ωix0) .

Assuming ωi ≪ ωr and ωi ≪ 1/x0, we can expand the left and
right sides at leading order:

1 + ω2
c/V

2
0

1 + (2ωr − ωc)2/V 2
0

≈ 1 + 4ωix0

⇒ 1 + [ω2
c − (2ωr − ωc)

2]/V 2
0 ≈ 1 + 4ωix0

Hence

ωi ≈ −ωr(ωr − ωc)

V 2
0 x0

ωr(ωr − ωc) < 0 ⇒ superradiance ⇒ ωi > 0 ⇒ exponential growth.
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3. Quasi-bound states of the Kerr black hole
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Scalar field on Kerr spacetime

Recall from exercise 1.6 that □Φ− µ2Φ = 0 yields the radial
equation {

d2

dx2
+

(
ω − ma

r2 + a2

)2

− V (r)

}
u(r) = 0,

where dx/dr = (r2 + a2)/∆.

At the horizon (x → −∞), ωc =
ma

r2++a2
= mΩH .

Low-frequency waves 0 < ω < mΩH are superradiant.
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Scalar field on Kerr spacetime

We do not need a mirror for confinement; with a field mass µ some
modes of the field are bound to the black hole.

Newtonian,

Centrifugal,

Black
hole! -

1

r

+L2

r2

0 10 20 30 40 50
r � M

1

V � Μ
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Bound states of scalar field

A scalar field Φ satisfying □Φ− µ2Φ = 0 which is regular on H+ and as r → ∞
has a discrete spectrum of complex frequencies

ω = ω̂ + iν

labelled by azimuthal m and total l ang. mom., and overtone n̂.

In limit α ≡ Mµ ≪ l, there is a hydrogenic spectrum with fine structure
corrections:

ω̂

µc2
≈ 1− α2

2n2
− α4

8n4
+

(2l − 3n+ 1)α4

n4(l + 1/2)
+

2am/Mα5

n3l(l + 1/2)(l + 1)
+ . . .

where n = n̂+ l + 1.

The fine and hyperfine structure terms found by Baumann, Chia & Porto,
Phys. Rev. D 99, 044001 (2019) [arXiv:1804.03208].

For Schwarzschild BH, all states decay ν < 0.

For Kerr BH, states satisfying the superradiant condition, 0 < ω̂ < mΩ will
grow, ν > 0. The co-rotating dipole mode l = m = 1 is dominant
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Bound states of scalar field

The bound state spectrum (ω/µ) is determined by two dimensionless
parameters

0 ≤ a∗ < 1, Mµ ≡ GMµ

ℏc
∼ Horizon radius

Compton wavelength
.

Hydrogenic wavefunctions with gravitational Bohr radius a0 ≈ 1/(Mµ2).

For superradiance, we need µ ≲ mΩ, and here Ω ≤ 1/2M .

Hence the instability is significant for Mµ ∼ O( 1
2
), but

exponentially-suppressed for large Mµ.

For a pion π0 + astrophysical BH, Mµ ∼ 1018 (!)

The instability is only significant for primordial black holes . . . or ultra-light
bosonic fields such as axions.
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Growth of bound states: Key results

Zouros & Eardley (1979):

Mν ∼ 10−7e−1.84Mµ, Mµ ≫ 1.

Detweiler (1980):

Mν ∼ − 1

12
(Mµ)9 (µ− Ω) r+, Mµ ≪ 1, l = 1

See Bao, Xu, Zhang, Phys.Rev.D 106, 064016 (2022) for sub-leading order calc.

Numerical results for intermediate regime Mµ ∼ 1 found by
Furuhashi et al. (2004), Cardoso et al. (2005), me (2007) and
others.

Minimum e-folding time τmin = 1/νmax,

τmin ≈ 5.81× 106GM/c3 ≈ 29 sec×
(

M

M⊙

)
for a ≈ 0.997M and Mµ ≈ 0.45.
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Unstable Bound States: Mν > 0
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What is the profile of the bound states?
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How do BH parameters evolve?
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Evolution of massless scalar field on Kerr spacetime

µ = 0, mirror at
r = 20M .
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Evolution of massive scalar field on Kerr spacetime
‘Early’ times: t ≲ 104M
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Evolution of massive scalar field on Kerr spacetime
‘Late’ times: t ≲ 4× 106M
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Evolution of massive scalar field on Kerr spacetime
Fourier analysis: recovering the bound state spectrum
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Evolution of massive scalar field
Fourier analysis: recovering the growth rate of n = 0 and n = 1
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4. Massive (dark) photons and gravitons?
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Massive spin-one fields

What if a spin-1 field had a mass m?

∇βF
αβ +m2Aα = 0.

‘The string photiverse’: non-trivial gauge field configurations.

No gauge freedom: m ̸= 0 ⇒ ∇αA
α = 0.

Three physical polarizations S = −1, 0,+1.

Under spatial inversion, S = +1 and S = −1 are even-parity, and
S = 0 is odd-parity.
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Bound states of the Proca field

Calculating the growth rate of the Proca field was a challenge of interest for several
years. Highlights include:

“Superradiant instabilities in astrophysical systems”, Witek, Cardoso, Ishibashi
& Sperhake, Phys. Rev. D 87, 043513 (2013).

“Black-Hole Bombs and Photon-Mass Bounds”, Pani, Cardoso, Gualtieri, Berti
& Ishibashi Phys. Rev. Lett. 109, 131102 (2012).

“Superradiant Instability and Back-reaction of Massive Vector Fields around
Kerr Black Holes”, East & Pretorius, Phys. Rev. Lett. 119, 041101 (2017).

“A modern approach to superradiance”, Endlich & Penco, JHEP 2017: 52
(2017).

“Black Hole Superradiance Signatures of Ultralight Vectors”, Baryakhtar,
Lasenby & Teo, Phys. Rev. D 96, 035019 (2017).

“Massive Vector Fields in Kerr-NUT-(A)dS Spacetimes: Separability and
Quasinormal Modes”, Frolov, Krtous, Kubiznak & Santos, Phys.Rev.Lett.
120, 231103 (2018).
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Bound states of the Proca field

Baryakhtar, Lasenby & Teo (2017) derived an analytic approximation for the
growth rate:

Im(ω) ∼ (Mµ)2j+2l+5(mΩ− ω)

East (2017) obtained numerical data for the growth rate from time-domain
simulations. This is Fig. 2 from BLT ↓
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Separability of the Proca field

In 2018, Frolov, Krtous, Kubiznak & Santos showed that the equations
governing the even-parity (S = ±1) modes of the Proca field are separable!

With the ansatz Aµ = Bµν∇νΨ for the vector field, and a multiplicative
separability ansatz for Ψ, FKKS found that

d

dr

[
∆
dR

dr

]
+

[
K2

r

∆
+

2− qr
qr

σ

ν
− qrµ

2

ν2

]
R(r) = 0

1

sin θ

d

dθ

[
sin θ

dS

dθ

]
−

[
K2

θ

sin2 θ
+

2− qθ
qθ

σ

ν
− qθµ

2

ν2

]
S(θ) = 0

where

Kr = am− (a2 + r2)ω, Kθ = m− aω sin2 θ,

qr = 1 + ν2r2, qθ = 1− ν2a2 cos2 θ, σ = ω + aν2(m− aω).

Here ν is the separation constant (impose regularity on S(θ) at poles).

In the limit a → 0, S = Ylm(θ) and ω/ν − µ2/ν2 = −l(l + 1).
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Separability of the Proca field

The tensor Bµν in the ansatz Aµ = Bµν∇νΦ is related to the principal
tensor hµν via

Bµν (gνσ + iνhνσ) = δµσ

For technical details see

“Massive Vector Fields in Kerr-NUT-(A)dS Spacetimes: Separability and
Quasinormal Modes”, FKKS, arXiv:1804.00030.
“Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes”, KFK,
arXiv:1803.02485.

“Black holes, hidden symmetries, and complete integrability”, FKK,

Living Rev. Relativ. (2017) 20:6; arXiv 1705.5482.

The decoupled ODEs can be solved numerically in the usual way (direct
integration) to find the bound state spectrum.
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Proca field: results

SRD, Phys. Rev. D 98, 104006 (2018).

Sam Dolan (Sheffield) Superradiant Instabilities 1st July 2024 36 / 45



Proca field: comparison

PRD 98, 104006 (2018) vs V. Cardoso et al, Astropart. Phys. 03 (2018) 043.
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Massive spin-two field?

Dias et al, Phys. Rev. D 108 (2023) 4, L041502.

A special dipole mode dominates, ωi ∝ (Mµ)3(ωr −mΩ).

For nearly-extremal Kerr BH, Mωi ≈ 0.019 for Mµ = 0.8, and

τ ≈ 2.6× 10−4

(
M

M⊙

)
sec.

Almost two orders of magnitude shorter than any other
superradiant mode.
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5. Black holes as particle detectors
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Mass gaps in the Regge plane

Arvanitaki-Dimopoulos-Dubovsky et al ’09: If accretion is not efficient enough
to support the superradiant instability, then the black hole will spin down.
Since the instability rate is highly sensitive to Mµ, this would lead to “gaps”
appearing in the Regge plane which diagnose the mass of the axion /
ultra-light field.

“The maximum allowed spin for a black hole as a function of its mass assuming there are two axions with

mass ma1 and ma2 corresponding roughly to black hole masses of 2M⊙ and 106M⊙.”
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Mass gaps in the Regge plane: Proca field

Fig. 1 in Pani et al. (2012), “Perturbations of slowly-rotating ...”

Red crosses = survey data.
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Mass gaps in the Regge plane: Scalar & Proca

Fig. 1 in BLT (2017) “Black Hole Superradiance Signatures ...”

Solid = Proca. Dotted = Scalar field.
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Hairy black holes

Various theorems show that 4D black holes with hair cannot
exist . . .

. . .but the theorems typically use an axiom that the field shares
two Killing symmetries ξa(t)∇aΦ = 0 = ξa(ϕ)∇aΦ.

In 2014, Herdeiro & Radu evaded this axiom by considering a
helically-symmetric complex field (ξa(t) +Ωξa(ϕ))∇aΦ = 0
generating a stationary stress-energy Tab = 0.

They identified a class of 4D scalar-hairy (and Proca-hairy) black
holes connecting the Kerr black hole to the boson star family.

Work by East & Pretorius suggests that the superradiant
instability can evolve towards to a Herdeiro-Radu hairy black hole.
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Hairy black holes: phase diagram

Fig. 2 from “Kerr black holes with scalar hair”, PRL, Herdeiro & Radu (2014).
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We will learn more about possible astrophysical signatures of
superradiant instabilities in the talks this week.

Thank you for listening.
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