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some remarks:

K very large literature (thousands of papers)

(- Black Hole uniqueness: classic subject
(review: e-Print: 1205.6112)

<

-

(minimize the deviation from GR&SM)
- here: dirty < hairy

- dirty Black Holes: subjective choice of models

the no hair conjecture can be violated!
(validity Is rather an exception)

kexercises/questions

- here: no dynamics or contact with observations..

~

/




Outline of the lectures

L1
- review of (electro-)vacuum black hole solutions N
- black hole uniqueness
- the “no hair” concept
- Beckenstein theorem
O scalar hair: various mechanisms Y
L2

- black holes with synchronized hair: scalar and Proca fields

- beyond GR: higher order curvature terms

- black hole scalarization

- vector hair

- other models of hairy black holes (e.g. gauged scalars)

~




Modern description of black holes
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1915: Einstein’s General Relativity

Curvature of Distribution of
space mass/energy
A - &q7G T
a4 “af
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Some constants
w4 Sitzung der physikalisch-mnthematschen Rigsse vom 20, November 1315
Die Feldgleichungen der Gravitation.
Von A. Eixsrei,
lw pwel vor kurzem erschienenen Mitteilungen® habe iel gezeigr. wie

man 2u Feldaleichungen der Gravitation gelangen kann, die dem Postu-
lat allgemeiner Relativitit entsprechen, d. h, die in jhrer allgemeinen
Fassung beliebigen Substitutionen der Raumizeitvariabeln gegenitber ko-
variant sind

Der Entwicklungsgang war dabei folgender Zunfiehst fand ich
Glelchungen, welehe die Newrossoue Theovie als Niherung enthalten
und beliebigen Substitugionen von der Determiinante | gugﬁuﬁ[‘n‘l' ka-
variant waren. Hierauf fand ich, dal diesen Gleichungen :allgemein
kovartante entsprechen, falls der Skalar des Energietensors der »Ma-
terives verschwindet.,  Das Koordinatensystem war dann nach der vin-

fachen Regel zu spezialisieren, Jall | —g zu 1 gemaeht wird, wodurch

dic Gleichungen der Theorie etne eminente Vereinfachunge crfihren.




1916: Schwarzschild’s solution

Uber das Gravitationsfeld eines Massenpunktes
nach der EmsTemNschen Theorie.

Von K. ScHwWARZSCHILD.

(Vorgelegt am 13, Januar 1916 [s. oben S. 42))

§ 1. Hr. Eixsteix hat in seiner Arbeit iiber die Perihelbewegung
des Merkur (s, Sitzungsberichte vom 18, November 1915) folgendes
Problem g(‘~lc‘llt :

Fin Punkt bewege sich gemill der Forderung

rj ‘ /1.\' e l
wobei (1)
ds = l\ 9. dr_dx, ; : x.:.x.sl
ist, ¢., Funktionen der Variabeln @ bedeuten und bei der Variation

am Anfang und Ende des Integrationswegs die Variablen & festzuhalten
sind. Der Punkt bewege sich also, kurz gesagt, auf einer geoditischen
Linie in der durch das Linienelement ds charakterisierten Mannig-
faltig

' dr? IM

ds® = —art r2(d6? + sin? 0dep?) — (1 —

)dt?
,




a rotating black hole

1963: Kerr solution

GRAVITATIONAL FIELD OF A SPINNING MASS AS AN EXAMPLE
OF ALGEBRAICALLY SPECIAL METRICS

Roy P. Kerr*

Dalversity of Texss, Austin, Texas and Aerospace Research Laboratories, Wright-Patterson Alr Force Base, Ohio
(Received 26 July 1963)

Goldberg and Sachs' have proved that the alge- where { |s a complex coordinate, a dot denotes
braically special solutions of Einstein's empty- differentiation with respect to u, and the operator
space field equations are characterized by the D is defined by
existence of a geodesic and shear-free ray con- D =8/8¢ -0/
gruence, k.. Among these spaces are the plane- !
fronted nm and the Robinson-Trautman metrics® P is real, whereas  and m (which is defined to
geometry: for which the congruence has nonvanishing diver-  be m, +im,) are complex. They are all independ-

====2_ but is hypersurface orthogonal. ent of the coordinate r. A is defined by

Tog =0

no matter

I|2=r2+a2mﬁzﬂ
A =1%—-2GMr + a?

a=0: spherical symmetry (Schwarzschild solution)



so far vacuum case only

-

~

- how general are these results?

- what about matter fields?

\ Curvature of Distribution of /

space mass/energy

f, _8G 1~

aff 4 a;’
L & /

Some constants




Maxwell
field

1916,1918: Reissner-Nordstrom sol

ution

ds?

106

4, Uber die Figengraviiation des elekivischen
Feldes nach der Einsteinschen Theorie;

von H, Reissner,

Nachdem e, Einsfein durch die Erkliveng der Perihel-
bewegung dex Merkur dis Iruehtbarkeit sciner neven ko-
vurwplen Feldgleichungen der Gravitation und damit  des
Postulats der allgeweinsten Relativitdt gezeigt und an an-
derer Stelle die allgemem kovariante Fassung der Maxwell-
Lorentzschen Cleichungen des elektromagnetischen Feldes
gegeben hat, erschien es mir aly nichste Aufgabe, den Fin-
flull der Ligengravitation dex elcktrischen Peldes von Kuogel-
syvmmeirie  an einew einfachion  Beigpiel 72w untersochon.
Ieh gmg dabel allerdings von der Hollnung sas. ciucy sta-
tisehen Zusumumenhall von Elementarladiongen durell deren
Ligengravitation za finden, olms den Boden der Maxwell-
schen Theorie verlassen zu brauchen, konnte aber ima Verlaol
der Arbeit zunichst nar fesistellen, daB die Bimslcinschw
Gravitation zwar das Feld der elelirischen Llemwenturlacung
n bestimmter, ubrigens ungehcuer geringer Weise verzerrt,
aber ihrem Wesen naclh die gegenseitige slektrostatische Ab-

gelemente nieht aufheben kann.

Q

r

dt (Maxwell 1-form potential F' = dA)

+ r2d0?



Maxwell
field

JOURNAL OF MATHEMATICAL PHYSICS VOLUME &, NUMBEER & JUNE 1%65

1965:; Kerr-Newman solution

Metric of a Rotating, Charged Mass*

E. T. Newuan, E, Coucn, K. Crinnararen, A. Exton, A. Pragasy, anp R, ToreeNce

Physics Department, University of Pittsburgh, Pitisburgh, Pennsylvania
(19 June 1964)

A new solution of the Einstein-Maxwell equations ia presented. This solution has certain character-
istics that correspond to a rotating ring of mass and charge.

D=r’talcostd

also R. H. Boyer and R. W. Lindquist
J. Math. Phys. 8 (1967) 265



gravity + electromagnetism _
Schwarzschild/Kerr Black Hole

add electric charge Q @ @

Reissner-Nordstrom/Kerr-Newmann Black Hole

SPHERICAL METRY AXISYMMETRY

Q: are there more general (electrovacuum) BHs?

% what abour the multipolar field structure?

oL



Q: are there more general (electrovacuum) BHs?
e.g.
Maxwell field: multipolar structure

(Exercise 1)

(r.0.¢) = Z Z CemBe(1)Y (0. )

=l m==¢

_ 2M 2 dr? 2/ 102 . D 2

k Ry(r) = c1(r —2M) + 3 [%-H(l—ﬁ)m(l‘T)]

singularities




uniqueness theorems for Black Hole

1967: Israel’s theorem

PHYSICAL REVIEW VOLUME 164, NUMBER 5§ 25 DECEMBER 1967

Event Horizons in Static Vacuum Space-Times

WERNER ISRAEL
Mathematics Depariment, University of Alberla, Alberta, Canada
and
Dublin I'nstitste for Advanced Studies, Dublin, Ireland
(Received 27 April 1967)

The following theorem is established. Among all static, asymptotically flat vacuum space-times with
closed simply connected equipotential surfaces goy=constant, the Schwarzschild solution is the only one
which has a nonsingular infinite-red-shift surface goo=0. Thus there exists no static asymmetric perturbation
of the Schwarzschild manifold due to internal sources (e.g., & quadrupole moment) which will preserve
a regular event horizon, Possible implications of this result for asymmetric gravitational collapse are briefly
discussed,

Israel’s theorem:

An asymptotically flat static vacuum spacetime that is non-singular on
and outside an event horizon, must be isometric to the Schwarzschild
spacetime.




uniqueness theorems for Black Hole

1967-...: The electro-vacuum uniqueness theorems

Axisymmetric Black Hole Has Only Two Degrees of Freedom

B. Carter
Institute of Theoretical Astronomy, University of Cambridge, Cambridge CB3 OEZ, England
(Received 18 December 1970)

A theorem is described which establishes the claim that in a certain canonical sense
the Kerr metrics represent “the” (rather than merely “some possible”) exterior fields
of black holes with the corresponding mass and angular-momentum values.

VaClllllll: Kerr e 1963

Uniqueness terael 1967; Carrer 1971;

e %. / d*z/—gR D.C. Robinson, Phys. Rev. Lett. 34, 905 (1975).
T
Electro_vaCllllm: Kerr-Newnlall Newman et al. 1965
Uniqueness
1 R 1 W. lIsrael, Commun. Math. Phys. § (1968) 245;
= — /d4$\/ il = —F“VF”‘V D.C. Robinson, Phys. Rev. 10, 458 (1974)




uniqueness theorems for Black Hole

Carter-Robinson theorem:
An asymptotically-flat stationary and axi-symmetric vacuum spacetime that 1s non-singular on and

outside an event horizon, 1s a member of the two-parameter Kerr family.

The assumption of axi-symmetry was subsequently shown to be unnecessary. i.e. for black holes,
stationarity = axisymmetry (via the “rigidity theorem™, relating the teleologically defined “event
horizon’ to the local “Killing Horizon” Hawking 1972; I Récz and R Wald, Class. Quant. Grav. 13 (1996) 539).

review: e-Print: 1205.6112

limitations: (e.g.) analyticity, assumes connected event horizon, causality
- Einstein gravity

-

remark: - D=4 is very special (e.g. Black Rings in D>4)

a
- also asymptotic flatness L’ |

(e.g. a very different picture in AdS)

\_




gravity + electromagnetism _
Schwarzschild/Kerr Black Hole

electric charge Q

Reissner-Nordstrom/Kerr-Newmann Black Hole

\

SPHERICAL SYMMETRY AXYSYMMETRY

BH Metric Mass | Charge | Momentum
Schwarzschild Yes No No
Reissner—Nordstrom| Yes Yes No
Kerr Yes No Yes
Kerr—Newman Yes Yes Yes




AXISYMMETRY

- ™
uniqgueness theorems for Black Hole

———1

I

/ “In my entire scientific life, extending over forty-five years, the most \
shattering experience has been the realization that an exact solution of
Einstein’s field equations of general relativity, discovered by the New
Zealand mathematician, Roy Kerr, provides the absolutely exact
representation of untold numbers of black holes
K that populate the Universe.” /

S. Chandrasekhar, in Truth and Beauty (1987)
Nobel Prize (1983)

“Kerr paradigm”



“Kerr paradigm”

UNIQUENESS OF KERR’S SOLUTION

 Kerr’s solution describes a/l black holes
without electric charge

* More generally,
“BLACK HOLES HAVE NO HAIR”

* (No-hair theorem:| All traces of the matter

that formed a BH disappear except for:

MASS
ANGULAR MOMENTUM
not important
CHARGE —— | In astrophysics

“hair” is a metaphor for any messy/ complicated details (other fields, multipoles etc)



1971: Ruffini and Wheeler coin the expression “a black hole has no hair”

% W O

The collapse leads to a black hole endowed with mass
and charge and angular momentum but, so far as we can now
judge, no other adjustable parameters: “Ablack hole hasno
hair.” Make one black hole out of matter; another, of the same
mass, angular momentum, and charge, out of antimatter. No
one has ever been able to propose a workable way to tell
which is which. Nor is any way known to distinguish either
from a third black hole, formed by collapse of a much smaller o
amount of matter and then built up to the specified mass and ilE G S Geﬁmm’;{:é‘cd
angular momentum by firing in enough photons, or neutri- SR N | PN waves
nos, or gravitons. And on an equal footing is a fourth black
hole, developed by collapse of a cloud of radiation altogether
free from any “matter.”

Electric charge is a distinguishable quantity because it
carries a long-range force (conservation of flux; Gauss's law).
Baryon number and strangeness carry no such long-range
force. They have no Gauss’s law. It is true that no attempt to
observe a change in baryon number has ever succeeded. Nor
has anyone ever been able to give a convincing reason to ex-

pect a direct and spontaneous violation of the principle of 1
conservation of baryon number. In gravitational collapse, 2.0
however, that principle is not directly violated; it is tran- Charge

; . An fum
scended. It is transcended because in collapse one loses the D

possibility of measuring baryon number, and therefore this
R. Ruffini and John Wheeler, “Introducing the black hole”, Phyzics Today, January 1971, Pages 50--‘41|

“Kerr paradigm”



proof? no hair theorems

maximal set:

M, a, Q}

a Black Hole is still entirely defined by a set of parameters
which are its mass, spin and charge respectively

(saying the black hole has “no hair” is a metaphor for this simplicity)



N /
{ however, no general proof } > \}\:

> g
uniqueness and no-hair theorems: case by case study / - N
BH Metric Mass | Charge | Momentum
vacuum [——> Schwarzschild Yes No No
electromagnetic field —— >Reissner—Nordstrom| Yes | Yes No
vacuum [——> Kerr Yes No Yes

electromagnetic field ——; Kerr—Newman Yes | Yes Yes /

These lectures:

* the status of “no hair” conjecture
 other fields/beyond GR ?




Kerr geometry “provides the absolutely exact representation of untold numbers
of Black Holes that populate the Universe” (Chandrasekhar)

Black Hole hair: challenging the Kerr paradigm
two main directions:

1) include matter fields
(other than Maxwell)

also together

i) change the theory of gravity /

(still) an active area of research...



the meaning of hair: matter fields

5,5 =1 [——> Einstein equations
5,8 =0 > matter field equations

prove a no hair theorem

the study is done case by case or

(no general results):

+ construct the hairy black hole solutions

* rich subject
e many interesting results



some general remarks (i)

« very few exact solutions

» numerical methods (existence proof sometimes)

» all configurations here: no dynamics




some general remarks (i)

_ — ( R x
S = /””-"w-":—f‘f ( _ .,} — 4+ L, (¢) )‘Q\ :
._ 167G matter field(s) v

MinkowskKi

- probe limit: y in a fixed background

Schwarzschild,
Kerr etc

the concept of soliton: particle-like, no horizon; N
R4-topology; globally regular (do not require stability)

also, (here) no dynamics —




a general

mechanism various such models possess particle-like solutions in a flat
spacetime background (solitons) -- supported by non-linear effects

e.g. Q-balls, monopoles, sphalerons..

the setup

the solutions should survive

when including backreaction

S :> Einstein-matter field solitons

~




a general

mechanism various such models possess particle-like solutions in a flat
spacetime background (solitons) -- supported by non-linear effects

e.g. Q-balls, monopoles, sphalerons..

the setup

when including backreaction

-

.

the solutions should survive - _
. [ > gravitating solitons

~

moreover, when solitons exist in a
ii) given model, bound states of such

solitons with an event horizon

can typically be constructed

(hairy) Black Holes
inside solitons




the hair

finally:

some general remarks (iii)

primary 2,
(new global charges)

secondary
(typically)

It Is not safe to extrapolate the results to D>4
and/or other spacetime asymptotics




Black Holes
+

Scalar Fields




why scalar hair?

\) Scalar fields are one of the simplest types of “matter” often considered by

physicists

i) Scalar fields may be considered as a proxy to realistic matter, since

canonical scalar fields can be modeled as perfect fluids with some equation of state

i) There is at least one scalar particle in Nature (Higgs boson)

Beyond the Standard Model High Energy Physics models predict many more
(also Susy, String Theory,...)

lectures yesterday

(. the case of scalar hair is rather special (more difficult than expected) )

- Mayo and Bekenstein Phys. Rev. D 54 (1996) 5059 [gr-qc/9602057]:
‘the proliferation in the 1990s of stationary black hole solutions with hair of
various sorts may give the impression that the principle has fallen by the
\_ wayside. However, this is emphatically not the case for scalar field hair.” J




‘simplest case: real, massless scalar field

Fisher (1948) s= [ty (§ - 19,09 ]
Janis, Newman and Winicour (1968) et al.

R—M(p—-1) 1/ R+M(p+1) i ,
ds? — dt2 2 2( 102 2 0d>
8% = !R M 1)] + R— M| ) dR*+r(R)*(d6*+sin” Od¢®)

2 o . 1-1/p 14+1/p
r(R>=[R—M(u—1)]" " [R+M(u+1)"

scalar field

Qs R—M(u-—1)
SR [R+M(u+1)]

/ (Exercise 1)

, ; naked singularity!
scalar ‘monopole
(RN-like)

thus we need to consider more complicated models...



scalar field: multipolar structure

—

(Exercise 1)

m=r
¢ (r.0.¢9)= Z Z CemRe(r)Y o (0. 9)

£>1 m——~

2M dr?
2 =1 ——) g2 20902 4 sin2 Oddh2
da” = (1 . )dt +1—2M/r+r (d6* + sin” Od¢p*)

M
(exercise) Ry (r) =ci(r— M) +c2 [_1 " (% a ﬁ) i (1 N 2_)]

singularities




- I
Black Holes

_|_
Scalar Fields

\_ vy

there IS some tension between Black Holes and Scalar fields

normally, the Black Holes do not allow for scalar clouds around

however, the no-hair theorems can be circumvented

Black Holes with scalar hair: many unusual properties




more complex case (e.g. self-interaction)

at least a scalar field exists in Nature:

special
potential

the Higgs field:

: 1 -I‘:,J'Ef_',' N -
Vi — ———= =m"¢ + o>
(= L}-I'L"_ N Y.
OV ()
Do

~ : :
*non-linear field

sinteracts with other fields
< in the Standard Model
of Particle Physics

~

detected at LHC in CERN (2012)

‘Mexican hat’ potential

mass ~ 125 GeV (~10%° Kg)




other scalar fields?

fwee Qenerations of mater interactions | foree carrlers
(fermions) {bosons)
Il 1]

) s @ |-® @ | H
extensions of the w | chm | wp || guon | higgs
Standard Model 2 s % | @

down swange botom photon |
@ | IS : @
elecwon muon tau Z boson

hints String Theory s |

+extra dims

74% Dark Energy

cosmo/ogy

_ o inflation
effective description.. no evidence yet...

4% Atoms



OBSERVATION: normally (very) different characteristic scales

massive scalar field

h

< >

Wavelength

Higgs field:

A~ 10" "m

gravity

2GM
I'ir‘.i'.! — 2

1'_'.'

p—

ry -
¢ Event Horizon

Schrwar zschald radivs

_2GM

R'\fx ¢*

Sagittarius A* Black Hole:
rh ~ 24 million kilometers

(distance Earth-Sun:
47 million kilometers)



thus:

Black Holes
.|.

Scalar Fields

for Black Holes with the mass of the Sun: m ~ 101 ev (~1047 Kg)

(Higgs mass ~ 125 GeV)



still not so simple... _ _
various no-hair theorems:

S:I%/d:ww(%—£VdVW~Juh)

Assumption 1: -- canonical and minimally coupled scalar field to
Einstein’s gravity.

Assumption 2:-- the potential V obeys: ®(dV/d®)2 0 everywhere
- other versions as well (V>0)

Assumption 3:-- the scalar field inherits the spacetime symmetries.

9P =0 = d,d

more details e.g. in Herdeiro and Radu, e-Print: 1504.08209



a (classic) no-hair theorem: (J. Bekenstein 1972)

{ no (static) scalar field around a Black Hole J

Vi = 3‘;?’) () V2= qba‘;—f)

oV =V (pVp) — (Vo)?




Bekenstein argument:

o, OV(9) o2 . _ OVI(9)
Vi =55 <> V=0 36

V2 p =V(¢Ve) — (Vo)

V(oVo) = (Vo)?




Bekenstein argument:

Vip =

V2 p =V(¢Ve) — (Vo)

o , V()
V(6Ve) — (Vo) —“*‘a ;

5 V(eVe) = (Vo)?




Bekenstein argument:

vgqb—m;gf’) > Ve = qb—f)

[ v vieve) = [aav=s|@or + 02|

> [t s o o5 o

\ 3 (970) - /. (9v0)

/ d*z /=g [(V#)? + m?¢?] =0 ¢=0



how to understand this result;

LT

E

non-zero flux ——>global (electric) charge



LOOPHOLES?

black holes with ‘scalar hair’?

Yes — several different mechanisms

* various recent developments

» active field of research



no-hair theorems:

o e AR & s S , Sl
S=o / d*1y/=g (—1 — SV, OV e V(3 )

Assumption 1: -- canonical and minimally coupled scalar field to
Einstein’s gravity.

Assumption 2:-- the potential V obeys: ®(dV/d®)2 0 everywhere
- other versions as well (V>0)

Assumption 3:-- the scalar field inherits the spacetime symmetries.

(f)f Pi—[)i= (::)(-';,» P

more details in Herdeiro and Radu, e-Print: 1504.08209

however, these assumptions can be violated...




no-hair theorems:
Assumption 1: -- canonical and minimally coupled scalar field(s) to

Einstein’s gravity.

violation: an early example: Einstein-Skyrme model

four scalars satisfying the sigma-model

constraint ®@2®2=1 Skyrmilons

the flat space Skyrme model - effective theory

(T. Skyrme, 1961) - active field of research
. I R 1 - AT T (1 - AL - 2
S = e dtrv/—q (I — E‘Fﬂfl? VED® — 5|V, @V P |*)

~

guartic kinetic term

- the first physically relevant counterexample to the
no-hair conjecture in the literature

Luckock and Moss (1986)

review:
hep-th/9810070



no-hair theorems:

e % / ([41'\/__.(1 (]_; 5 %vu OdbVH D — V(_‘I’ })

Assumption 1: -- canonical and minimally coupled scalar field to
Einstein’s gravity.

Assumption 2:-- the potential V obeys: ®(dV/d®)2 0 everywhere
- other versions as well (V>0)

Assumption 3:-- the scalar field inherits the spacetime symmetries.

(f)f (I) e ” — (::)(-';) (I)

more details in Herdeiro and Radu, e-Print: 1504.08209




single scalar
LOOPHOLES?

no-hair theorems:

Assumption 2:-- the potential V obeys: ®(dV/d®)2 0 everywhere,

oo

s L OV(d)
3. a2 OV Q)
violation: PV <0 / dr \/—g {ﬁ Q)"+ @ = ()

a4 N

- it requires violation of the energy conditions
- the scalar fields may possess particle-like solutions

- all known solutions are unstable

\_ )




such solutions are simple to construct (even in closed form)

Spherical symmetry: & = ¢(r)

The KG equation: 1 % (292, _ 4V

r2 dr dr dao

(here flat space)

‘potential engineering”

(

steps towards build your own hairy BH solution:

exercise 2

estep 1) choose your own scalar profile ¢(r)

estep 2) invert it to get r=r(¢)

ostep 3) use the Klein-Gordon equation to compute dV/d¢
k estep 4) reconstruct the scalar potential V(¢)

/




an example: 1504.08209 [gr-qc]

step 1: scalar fields in Schwarzschild BH background
(Klein-Gordon equation only)

14M — 5r (M)W 3 . 3

(T =

91/355/3,.5 \ )

‘potential engineering”



Including the backreaction: 1504.08209 [gr-qc]

JHEP 04 (2022) 096  e-Print: 2107.05656

A (= (B _lg svrs _via)
5= / d :z:\/—g( T~ SV, aVrD V(<I>))

dr
N(r)

ds® = =N {(r)o*(r)dt* + + 2(df* + sin® 8d?),

Spr— / " dr o(r) [mf _ @Nr%ﬂ + TEV(@)) ]

H

_ prove virial identity
(very useful expression)



an example:

dr*
N(r)

ds® = —N{T)JE(T)th +

+ 2(df* + sin® 8d?),

‘potential engineering”

1504.08209 [gr-qc]
JHEP 04 (2022) 096 * e-Print: 2107.05656



the solution: Qs JHEP 04 (2022) 096 * e-Print: 2107.05656

‘potential engineering”

Scalar field potential:

32 P2 P
W =30 + \/;e (@7 - 3)Ext(5)

3 2
m(r) = [1 Tzt ﬂT(@fQS -1)

1 ‘;'_ﬂs 15 o Qs _29: (s
LE (-2 R )]

extra metric function: Q%

o(r) =e 22

with Erf(x /
‘/_



what about the Higgs field?

Burda, Gregory and Moss\

$*  As ¢°  As ¢°
JA LN
g POV bt MZ 8 MIT

—1.x10-1t

Black holes with Higgs hair




e
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Many thanks for your attention!

/
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Summary:

The “no-hair” original idea (1971):

collapse leads to equilibrium black holes uniguely determined by (M,J,Q) -
asymptotically measured guantities subject to a Gauss law

and no other independent characteristics (hair)

The idea is motivated by the unigueness theorems
and indicates that black holes are very special objects

... but two
black holes

with same

M, J...

...must be exactly equal...




Black Holes
+

Scalar Fields




no-hair theorems:

o e AR & s S , Sl
S=o / d*1y/=g (—1 — SV, OV e V(3 )

Assumption 1: -- canonical and minimally coupled scalar field to
Einstein’s gravity.

Assumption 2:-- the potential V obeys: ®(dV/d®)2 0 everywhere,

Assumption 3:-- the scalar field inherits the spacetime symmetries.

(f)f Pi—[)i= (::)(-';,» P

more details in Herdeiro and Radu, e-Print: 1504.08209

however, these assumptions can be violated...




L LOOPHOLES? J

Assumption 1: -- canonical and minimally coupled scalar field(s) to

Einstein’s gravity.

violation:  an early example: Einstein-Skyrme model

four scalars satisfying the sigma-model

constraint ®2®2=1

Skyrmions

4

1 B 1 o | -
S = A /{'fl.f"y-"q (_]E B Evy‘l?r' Vi — fﬁ'I‘F[mI}‘*‘Fy]fI?“’|h)

guartic kinetic term

rather exotic example




single scalar
LOOPHOLES?

no-hair theorems:

Assumption 2:-- the potential V obeys: ®(dV/d®)2 0 everywhere,

violation: PV <

/- it requires violations of the energy conditions

- such models typically possess particle-like solutions even

in a flat space background ‘potential engineering”

- the solutions are unstable (?) J

.

rather artificial models




LOOPHOLES?

no-hair theorems:

Assumption 3:-- the scalar field inherits the spacetime symmetries.

violation:

i — 1 | N 9+ u
S = / c'fl.:'xkf'—;_’,r LUFT{_:-'R — El@r""’ {1‘-[’,';411’. p+ W0 ,4} — P

¥ a complex scalar field with wave features
(no quantum effects)  pilme—wt)

A\ /
Y R

Kerr black hole with scalar hair:

(e-Print: 1403.2757)
\_ /




more generally...

spin 0: arXiv: 1501.04319

spin 2: ?




a very rich subject

two (complementary) viewpoints:

* Boson/Proca stars:- one can add a BH at the center

« Kerr black holes: - branching towards a new family of

solutions due to superradiant instability

S. Dolan’s lecture

[ hairy black hole: bound state soliton + Kerr horizon }




Klein-Gordon equation 2 2 i
in a rotating Black Hole background v o t;f} =0
possesses ‘scalar cloud ‘solutions

scalar cloud



wave analogue of superradiant
Penrose process: > instability

Q
l ) .\‘JI H -

S. Dolan’s lecture

Zeldovich (1971) + many studies...

review: arXiv:1501.06570 (Brito, Cardoso and Pani)



|

bosonic
field

~

J

il myp—wt)

W= Wr + Wy

branching of
hairy Black Holes

S. Dolan’s lecture

(no quantum effects)



U = ¢(r,0)e e
scalar:

1
/ddxﬁf_ [—R - 59" DU+ W) — P

N

dr?
ng _ _EEFnthQ _|_EEF1 (i —I—ngl'?g) EFg sin ﬁ(dgﬂ Wdt)g ,

A = elme=wt) 3V dt + Hydr + Hadf + i Hzsin 0dyp)

stationary configurations



@ Kerr black holes with synchronised hair




spin-one

naively, such solutions should be simpler than Kerr-Newman:

However:

different pattern from Kerr(-Newman) !

synchronization condition
. (circumvent no-hair theorems)

A
D , \
( +no static limit | v = moy,
|
with H ~ IIf.:-f".i.r.'.lzl;.:—“-In";.

’ X




counterexample to
all we knew

general properties:




counterexample to
all we knew

general properties:

=
&
.§
S
=
g
3
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counterexample to
all we knew

general properties:




counterexample to
all we knew

general properties:




counterexample to
all we knew

general properties:

different pattern from Kerr

-

o

* NO static limit =
» violate Kerr bound

» different quadrupole

e distinct ISCOs >
* ergo-Saturns
- different shadows [




counterexample to
all we knew

general properties:

different pattern from Kerr

/~ ¢ no static limit N
« violate Kerr bound
» different quadrupole
< e distinct ISCOs >
* ergo-Saturns ”
e different shadows
e solitonic limit




counterexample to
all we knew

general properties:

different pattern from Kerr

/~ ¢ no static limit N .
- violate Kerr bound
» different quadrupole

< e distinct ISCOs >
* ergo-Saturns L
e different shadows

e solitonic limit y

*a recent result: two BHs balanced by scalar hair arXiv: 2305.15467



r : .. :
-- endpoint of superradiant instablity?

N SRt ol o

Press and Teukols

|2 Selected for a Viewpoint in Physics week ending
PRL 119, 041101 (2017) PHYSICAL REVIEW LETTERS 28 JULY 2017

-

Superradiant Instability and Backreaction of Massive Vector Fields around
Kerr Black Holes

William E. East' and Frans Pretorius’

‘the endpoints of evolution matches the known hairy black holes




Kerr geometry “provides the absolutely exact representation of untold numbers
of Black Holes that populate the Universe” (Chandrasekhar)

challenging the Kerr paradigm
two main directions:

1) include matter fields
(other than Maxwell)

also together

i) change the theory of gravity /

still an active area of research...



Black Holes
+

gauge fields




spin-1 fields (other than Proca)

/

-

Einstein-Maxwell system:

simple properties:

~

- Reissner-Nordstrom/Kerr-Newman: unique solution
- the electric (magnetic) charge: the only new parameter

non-Abelian gauge fields: part of the nature

- Is the same picture valid?

/

- for many years, this was the consensus in the literature. ..
- a few no-hair theorems..

-

\_

known non-Abelian solutions before EYM:

-- magnetic monopoles (1974) ~
-- sphalerons (1984)

they exist In flat space
already: YM+Higgs:
no need for gravity

)




Detour: Einstein vs Yang-Mills

Pure gravity (attraction) | Pure Yang-Mills (attraction/repulsion)
R 1
—— - 2

{ IGWG] [L 2Tr Fm,}
Lichenrowitz: there are black holes Deser, Coleman: Classical Yang-Mills
but there are no gravitational solitons, the theory in 3+1 dim is scale invariant -
only globally regular, asymptotically flat, there is no soliton solution
static vacuum solution to the Einstein egs
with finite energy is Minkowski space.

(Israel’s theoremq Static Einstein-Maxwell black holes are spherically symmetric

: Stationary black holes are completely characterized
[‘No-halr’ theoremq by their mass M, charge @ and angular momentum J

however...




VOLUME 61, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JULY 1988

Particlelike Solutions of the Einstein-Yang-Mills Equations

Robert Bartnik and John McKinnon

Centre for Mathematical Analysis, Australian National University, Canberra, A.C.T. 2601, Australia
(Received S February 1988)

We study the static spherically symmetric Einstein-Yang-Mills equations with SU(2) gauge group
and find numerical solutions which are nonsingular and asymptotically flat. These solutions have a
high-density interior region with sharp boundary, a near-field region where the metric is approximately

Reissner-Ngrdstrom with Dirac monopole curvature source, and a far-field region where the metric is
approximately Schwarzschild.

(the origin of all new features)

A — A% ot % — g%/2 (72, 7] — (obere SU(2) gauge group
i 3 .
(however, not important)



however...

Bartnik and McKinnon (1988):
EYM solitons (no horizon)
regular everywhere

Galtsov and Volkov,
Kuenzle, Bizon (1989, 1990)
EYM black holes

‘coloured’ Black Holes

" areview of A
the no-hair conjecture is violated in such hairy solutions:
Einstein-Yang-Mills model Volkov-Galtsov

hep-th/9810070
(Exercise 4) - /




-- N0 exact solutions...

-- however, rigorous existence proof
(several mathematicians in the *90s)

.

( -- many interesting properties \

-- various generalizations

-- in the static case, the only global chare is the mass M
(no magnetic/electric charge)

\_ /

however;

~

-- all solutions are unstable
-- also, the Schwarzschild solution maximize the entropy

(for a given mass)
-- no important physical applications | Mass~Mg,

G J




spin 0 + spin 1:

large
Einstein-Maxwell-dilaton system: literature
« an early example of hairy Black Holes
 secondary hair .-
O =—0D/r+..
the Einstein-scalar model
spin zero (scalars) | ,
: ] : ] R 1_ —cae
¥ bosonle flelds S= f d*z\/—g H = 5 0ubd" S — ——Fu I

V.

spin one (Maxwell, Yang-Mills)

the Einstein-Maxwell/YM model



violations of the

no hair conjecture Ny . _ _\
spin 0 [single (massive, complex) (0,®*)(5” )

scalar field

(‘synchronized hair)’ 0
5 Y
vacuum: . f —
Kerr solution - gauge fields: u@a: Lt w
\_ R Sy (2) F;L:{:' ) FL(L};_; v

- Abelian Proca field: 'F,._;;f“-j +%w‘l4f.ﬁ“

(‘synchronized hair)’ ) i

N\
_spin 0+1 )
L -gauged scalar fields  p, v = 5,0 +igA, U

> b,

‘natural” models




spin 0 + spin 1:

physical model :

the Einstein-scalar model

[ gauged scalars

spin one (Maxwell, Yang-Mills)

the Einstein-Maxwell/YM model



the Einstein-scalar model

mass term

R
L 4 — . *® Oy

g0

\ no black holes

(Pena and Sudarsly theorem)



next step:

R
— 4 — - ® 0Ty
S_/d /=g (u-;mt;* 0o U* 0T U(|lI'|))

the Einstein-Maxwell-scalar model

L

——&F“ﬁ—DlI'D‘:'-’II' (|
ik, (o)

Fus = 0,4y~ 0,4,

[ e more realistic ] gauge coupling constant

(standard model)




the Einstein-scalar model

R
_ 4. _ * AN
S_/d /=g (15?7@* 0 U* 9 U{|@|})

boson stars

="

R 1
S= [ d*zy/—g — _F,sF* — D W*D*V — U(|W
/ * g[mwc‘: 1 ( D]

gauged boson stars

spherically symmetric sector: (expectation)
no black holes

(Mayo-Bekenstein theorem)



the Einstein-Maxwell-scalar model

W3 F P — D WD — U(|ID|_}‘

—

1
4

- R
S= [ duy=g|—— -
/ VT llﬁ:rrG

however, loophole!

static, spherically symmetric black holes
W= qo




the Einstein-Maxwell-scalar model

dmf—[ W FP — D, WD — U(|¥])

1ﬁrC B 1

Rotation (——)Electric charge

rotating black hole with scalar hair

synchronization resonance -
Y w=mQy < 1o w = qP

condition: condition:




£ = —inyB“V = étr(W“yW”V)

Include matter fields Lu(Gu

S, e

U(1), SU(2) and SU(3) gauge terms Spl n O: scalars
what we know it exists F(Fe ) 50 (Zi) e B Higgs field
+ vro*iD, v + Hermitian conjugate
S e

lepton dynamical term

V2

v

sy g — xrez1 | VL
[ (71,€1) M er +ErM*$ ( ey )
Sommammn e’
electron, muon, tauon mass term

_V2 [ (—&r,71) ¢* M¥vp + op MY $T < —eL )]
v vy
e
neutrino mass term

+(ag,dL) 54D, (?li ) + @ago*iDup

+ dro*iD,dp + Hermitian conjugate
A
quark dynamical term

—? [(ﬁL,JL) $M%dp + dp M4 (Zi’)]

R

down, strange, bottom mass term

Microcosm V2 [ (- a) ' Mun + ()]

v ur

e N il
up, charmed, top mass term

+(Du) DH — mi (¢ — v/ 2%/ 20%.
S’

Higgs dynamical and mass term




Standard Model: SU(2)xU(1) gauged Higgs solitons

5 (r) _ <u2 (T) + 1 (;‘1?) ) sphalerons

¢ (r) — irh3 (z) (monopoles?)

D,® = (9, +A,)d

7
mass ~10 TeV

:l Hairy Black Holes inside sphalerons/monopoles !

Georgi-Glashow model: SU(2) gauged Higgs solitons

(also GUT) L :
Diz)= & 7y minimal mass - 1GeV

D,®=0,®+i[A,, P (no evidence)




Kerr geometry “provides the absolutely exact representation of untold numbers
of Black Holes that populate the Universe” (Chandrasekhar)

challenging the Kerr paradigm
two main directions:

1) include matter fields
(other than Maxwell)

also together

i) change the theory of gravity /

still an active area of research...



Hairy Black Holes
beyond General Relativity




a classic _
example stringy model

Einstein-Gauss-Bonnet-dilaton model

- 15 [ #5v3 |R- L @ +ac Ry

Rép = R**°Ryuyps —4RM Ry, + R®.

- the Kerr bound can also be violated

- no solitons R, —Y@ 2
¢ = aye ""Rgg




a ‘cousin’ model:

the Chern-Simons modified gravity

= [[dtay=a (R + 56 RR - 109, (Vi) -V (&)

N R — #Rabcdﬂbacd 5 with *Rﬂﬁcd — EE

(CS term affects only the spinning solutions)

- third order equations of motion...




. \
another not a new idea

mechanism  Black hole scalarisation Damour and E-Farese

(neutron stars)

. - e ., 0t
Sy =— [ d*z/—g |=(V) )2 + flo)L(; f|] Ob = 22T
__ ‘/f ry/ r;{ ) Jl@)Liw:g |::> ) 55

2 ODad-

of

i

5 + Olir'fr_'J:i;l

=)

— flo)y=1

a=0

G=aqn

f() = e22¢

different case

1, o2 f

{‘F: — *“'E-f'I Jo =0, where —pus,, = —= T
eJ. 2" &l dde la=0
e.g.
() = e
Fundamental solutions:
=0 (1 q) (ground state of the system)
_ _ usually thermodynamically
Scalarised solutions: / favoured
¢#0 (1 g) (excited state) ‘




T=Lag=R?—- 4R, R* + R,.qR*4
arXiv:1711.01187, 1711.02080, 1711.03390

I=Lcs=RR="R%R".4

possible models

So=— [ dev=a [V + ST

svectorization
espinorization...



Generic features of scalarized Black Holes:

P(r.0.9) = em¥em(0.@)Up(r).

* Black Holes without isometries

very different from the Einstein(-Maxwell =(dilaton)) case




Generic features:

p(r.0.p)=>

£ et m

}’fl.f M ':r H I!}'” L / ':r .I"_.]

i)

hairy
black hole

S < S

GR scalarized

the |=0 scalarized Black Holes are usually entropically favoured



Generic features:

e o — e — —— e — — — e — — —— e — — — —

— oa=-177.862
- o=-225.274
--- 0 =-294.429
- = o=-400.979
- o=-511.689

a1 1 1
2000 300 400 500 600
-0 q=02

M B R B L
0 100 200 300 400 500
t

here: the EMs model (arXiv:1806.05190 ) T —F




another example arXiv: 1901.02953
=R

better motivated

NCG inspired modified Schwarzschild BHs
(Nicolini solution)




spin 2: Hairy Black Holes even in the absence of matter fields

Lu, Perkins, Pope and Stelle, “Black Holes in Higher Derivative Gravity®,
Phys. Rev. Lett. 114, 171601 (2015)

I = /dd‘xﬁ—g (TR — aClyy e CHYP7 )

d’rg o 2 . 2 2
err (df* + sin” #do™) fr) # h(r)

new solutions bifurcating from Schwarzschild black hole




open problem

.

Kerr solution S

R

\_

- gauge fields:

- Abelian Proca field: F JFO +_ﬂ A A°

(‘synchronized hair)’

s A\
spin 0 single (massive, complex) (8, 8*)(" D)
scalar field '
. . )
(‘synchronized hair)’
s « fermions ? )
vacuum: -

U(1): Fuv " Hw

L

spin 0+1

sue Flo) Pl

S

h

-gauged scalar fields p, v =a,7 +igA, ¥

y,

what about spin 1/2?

no BH with fermionic hair: the only exception (so far)




Overview

We have seen that there are uniqueness theorems, in vacuum,
proving that the most general black hole solution (regular on and
outside an event horizon) is the Kerr solution.

These theorems generalize to electro-vacuum: the most general
black hole solution (regular on and outside an event horizon) is
the Kerr-Newman solution

These uniqueness theorems motivated the no-hair conjecture
stating that in general (i.e even for more general matter fields)
the final state of gravitational collapse is a black holes
characterized by conserved charges M,J,0,

all of them associated to a Gauss law, and no further
parameters, to which “hair” provides a metaphor.




To support this idea, the community established various
no-hair theorems applying to different models and with
different assumptions.

Nevertheless, solutions with hair
have been found In various models




Microcosm

Standard Model matter: there are Black Holes beyond Kerr

"NO HAIR" CONJECTURE IS NOT VALID

however:

/- the spirit of ‘no hair’theorems is respected \

» the solutions are typically unstable

» these are not macroscopic configurations

» (possibly) relevant at microscopic scales, on

.

Iy/




Macrocosm/beyond Standard Model:
even more complicated picture

first mechanism

two recent results:

(

\_

p

N
superradiant HD Kerr black hole
Instability with synchronized hair

/
second mechanism
tachyonic HD scalarized black holes
Instability (also static)




a byproduct of this study:

e )
[some new theory results as compared to electro-vacuum General Relativity

(one cannot safely extrapolate the Kerr results) )

example (i): the shape of the event horizon

el dalelRanz oY discrete symmetries

Schwarzschild/RN

Black Holes in some
Black Hole

Einstein-Maxwell-scalar model

example (i): the issue of :maximal rotation

usual Black holes cannot rotate too fast”

not a universal bound!

Kerr bound: | 7 = M°




to summarize:

the GR black hole possesses hairy generalizations
\_ /

....however, still a lot of work to be done

» find realistic models
» establish stability/uniqueness
» rotating Black Holes

- In the physics of astrophysical black holes?

P
Q_ are there any fields in Nature that can be relevant}
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Many thanks for your attention!
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