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Unveiling dark objects with gravitational waves
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Masses in the Stellar Graveyard

Gravitational waves have already revealed new populations of
black holes and neutron stars. How can we use them to look for
dark particles?
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Gravitational wave probe of new particles
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Strong gravity effects can probe new part of parameter space
where particles are weakly coupled to standard model




Superradiant instability: realizing the black hole bomb

@ Massive bosons can form bound states, when frequency
w < mQy grow exponentially in time.

@ Search for new ultralight bosonic particles with Compton
wavelength comparable to black hole radius

@ Occurs for ultralight scalar and vector bosons, e.g. QCD
axion, string axiverse, dark photons. (and ultralight spin-2
fields?)




Observational signatures of ultralight boson
superradiance

@ Measure black hole spin from
merger GWs, or EM observations of
accreting BHs. (Baryakhtar+ 2017; Ng+
2021)
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o Can rule out certain mass ranges

@ Blind GW searches for either
resolved or stochastic sources (Brito+
A ! 2017; Tsukada+ 2019; Zhu+ 2020; LVK
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Observational signatures of ultralight boson
superradiance

@ Targeted GW searches—e.g.
follow-up black hole merger events.
(Isi+ 2019; Ghosh+ 2019; Sun+ 2020;
Chan+ 2022; Jones+2023)

. © Obviates need to make
assumptions on black hole
population.

o However characteristically occur at
large distances.

Question: Can we target black hole merger events in near term? Need to
model evolution of GW signal.



Gravitational waveform from black hole superradiance

@ Cloud grows exponentially, then dissipates over longer
timescale through GWs
@ Vector bosons louder and faster

@ GW frequency increases with time (c.f. a neutron star
spinning down)
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Gravitational waveform from

black hole superradiance

Frequency drift and phase shift due to changing cloud mass.
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Performing follow-up searches of merger events

New long duration search method optimized with signal model.
Jones, Sun, Siemonsen, WE+ (2023)
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Performing follow-up searches of merger events

Can also follow-up supermassive black hole mergers with LISA.
[in addition to stochastic or resolved sources of GWs in

space-based detectors (Brito+ 2017) and possibility of effects in
binaries (Bauman+ 2019)].
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Effect of non-gravitational interactions

Questions to address:

@ Do interactions halt superradiant growth?

@ Is the process gradual or violent (cf. bosenova scenario)?

@ When do they give rise to additional observables?
(Arvanitaki+ 2010; Yoshino+ 2012; Baryakhtar+ 2020; Omiya+ 2022; Clough+ 2022;
Spieksma+ 2023; ... )
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Dark Photon with Higgs Mechanism

Model for nonlinear interaction: mass of dark photon arises
from (dark) Higgs mechanism:
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Stringy bosenova

Changes saturation of superradiant instability, can lead to
episodic bursts.

E.g. for Mgy = 60 Mg and o = 9 x 10~ "3 eV, vA1/4 < 10 MeV (gr—1/4 > 10~19).



Multimessenger signals from dark photon
superradiance

Coupling to standard model: kinetic mixing with photon
L>eF! Fab/2
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Superradiant cloud can rise to turbulent pair plasma, lead to
pulsar-like electromagnetic transient counterpart to GWs with

L <10* erg/s.

Siemonsen, Mondino, Egana-Ugrinovic, Huang, Baryakhtar, WE (2023)



What about massive spin-2 instability around black
holes?

Spin-2 superradiant instability is faster (c.f. w;M < 103 for
spin-1) but even faster mono-polar (m = 0) instability.
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What is fate of monopolar instability of massive
spin-2?

Massive spin-2 field has same Gregory-Laflamme instability as
a black string in 5D GR with k — p. (Babichev+; Brito+ 2013)

Determining backreaction requires nonlinear theory:

@ Nonlinear massive bi-gravity (de Rham+ 2011, Hassan+ 2012):
Removes BD ghost at nonlinear level. Not yet known how
to make well-posed.

@ Quadratic (aka fourth order or Stelle) gravity is well-posed
(Noakes 1983), but has Hamiltonian that is unbounded from
below as dictated by Ostrogradsky’s theorem.
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Can use as simple model of backreaction.



Backreaction of spin-2 monopolar instability

Two different possibilities for same black hole:
(Miz? = (201)7")
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Backreaction of spin-2 monopolar instability
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As black hole shrinks, curvature blows up:
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Black hole shrinks to zero mass, giving mild naked singularity
(similar to Gregory-Laflamme instability of 5D black string).

WE & Siemonsen 2024
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Massive spin-2 instability
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Outlook

Gravitational waves and compact objects are a powerful probe of the dark
sector. Black hole superradiance can reveal ultralight bosons:

@ New signal models and search methods will allow for following up
merger events with current and future detectors

@ Couplings to standard model and self-interactions may give rise to new
observables

@ Massive spin-2 case can be quite different

Understanding dynamics and observational signals gives strongest
constraints, and sheds new light on fundamentals of dynamical spacetime.




