Impact of self-interaction on the axion cloud in the relativistic regime

Hidetoshi Omiya(Kyoto U)

Work with Takuya Takahashi, Takahiro Tanaka, and Hirotaka Yoshino July 3rd@New Physics from Psi

Why Axion? Search string theory through axion Axion carries information $\mu \nu$ about higher dimensions. 10 dim $a a^a a^a$ a a a a a a a4 dim Verse (Arvanitaki et. al., 2010) Plentitude of <u>ultra-light</u> and <u>weakly interacting</u> $\mu \le 10^{-10} \text{eV}$ $F_a \sim 10^{16} \text{GeV}$ axions.

(See for example, 2103.06812)

More on axion

- Other interests on axion
 - -Solve strong CP problem
 - -Candidate of the dark matter
 - -Can be observed by the astrophysical phenomena

Supperradiance and axion

Highly spinning black holes + axion

Spontaneous formation of the

Superradiance

macroscopic condensate of the axion

1.Energy and angular momentum extraction

2.Gravitational wave emission

Supperradiance and axion

1.Energy and angular momentum extraction

• To give a precise constraint on axion from observation, precise understanding on the evolution of cloud is necessary.

2.GW emission

Important effects

- Self-interaction
- Tidal effect from the companion
- Coupling to other fields

Main message of the talk

- Q. How does the cloud evolve under the self-interaction?
- A. Higher multipole modes would excite.
 No Bosenova.
 Emit gravitational waves at several frequencies.

<u>Self-interaction</u>

$$S = F_a^2 \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\partial_\mu \phi)^2 - \mu^2 \left(1 - \cos \phi \right) \right]$$
$$V(\phi) = \mu^2 (1 - \cos \phi) \sim \frac{1}{2} \mu^2 \phi^2 \left[-\frac{1}{4!} \mu^2 \phi^4 + \cdots \right]$$
Attractive

As cloud grows, self-interaction starts to work

1. Dissipation of the cloud due to scattering

2. Deformation and collapse of the cloud

1.is more important, and dominates the evolution.

Dissipation by mode coupling

(Baryakhtar+, 2020)

 $\phi_{cl}^{(2)}: l = m = 2, \omega_R^{(1)} < \omega_R^{(2)} < \mu$

 $\phi_{cl}^{(1)}: l = m = 1, \omega_{R}^{(1)} < \mu$

l = m = 2 transit to l = m = 1Dissipate through m = 3.

<u>Deformation of the cloud</u>

(HO+, 2022)

Real and imaginary part of the frequency is modified.

Deformation of the cloud

(HO+, 2022)

Real and imaginary part of the frequency is also modified.

Deformation of the cloud

(HO+, 2022)

Axions attract each other to make the configuration more compact.

Long term evolution

For observation, long term evolution is needed \rightarrow Higher harmonics and spin-down

Evolution equations

Include up to l = m = 4, and evolve adiabatically.

$$\frac{dM_1}{dt} = 2\omega_{1,I}M_1 - 2F_0M_1^2M_2 + F_3M_1M_2^2 + \cdots ,$$

$$\frac{dM_2}{dt} = 2\omega_{2,I}M_2 + F_0M_1M_2^2 - 2F_3M_1M_2^2 + \cdots ,$$

$$\frac{dM_3}{dt} = 2\omega_{3,I}M_3 + \cdots , \quad \frac{dM_4}{dt} = 2\omega_{4,I}M_4 + \cdots ,$$

$$\frac{dM}{dt} = -F_a^2 \left(2\omega_{1,I}M_1 + \cdots\right) ,$$

$$\frac{dJ}{dt} = -F_a^2 \left(2\omega_{1,I} \frac{m_1 M_1}{\omega_{1,R}} + \cdots \right) ,$$

 $M_{1,2,3,4}$: Mass of l = m = 1,2,3,4 cloud

M, J: Mass and Angular momentum of the black hole

Evolution of the cloud

(HO+, 2024)

Evolution of the black hole

Example of time evolution

(HO+, 2024)

<u>Change decay constant</u>

(HO+, 2024)

Gravitational waves

How about gravitational wave signals?

BH

$$\phi \sim e^{-i(\omega_1 t - m_1 \varphi)} \psi_1 + c.c.$$

$$+e^{-i(\omega_2 t-m_2 \varphi)}\psi_2 + \mathrm{c.c.}$$

$$T_{\mu\nu} \sim \partial_{\mu} \phi \partial_{\nu} \phi$$

Time dependent part of energy-momentum tensor

$$e^{-i(2\omega_i t-2m_i \varphi)}$$
,

$$e^{-i((\omega_2-\omega_1)t-(m_2-m_1)\varphi)}$$

Oscillates with sum and difference of the frequencies

Gravitational waves

Gravitational wave

 $\omega_{\text{trans}} = \omega_2 - \omega_1$

Co-existence of many modes \rightarrow Rich level transition signal

Gravitational wave frequency

Level Transition:Hz

Gravitational wave amplitude

Gravitational wave amplitude

Suppression of the Pair annihilation signal

Difference between the Level transition signal Quadrpole transition or not

$$<211 | Q_{ij} | 433 > \neq 0$$

 $<211 | Q_{ij} | 322 > = 0$
 Q_{ij} :mass quadrupole

Gravitational wave amplitude

- Investigated the evolution of the axion around the black hole, taking into account the relativistic correction, higher multipoles, and spin down.
- Self-interaction excites higher multipole moments, leading to a rich gravitational wave signal.
- Level transition gravitational wave with $\Delta m = 2$ can provide larger signal around GUT scale decay constant.
- For stellar mass black holes, frequency is around Hz.

Back up

Lower Frequency?

Can we observe with Pulsar Timing Array?

 \rightarrow Seems to be No. Higher multipole modes do not excite within the age of the universe.

(Frequency $\propto M_{\rm BH}^{-1}$, Excitation time $\propto M_{\rm BH}$)

Non-relativistic VS relativistic

Non-relativistic VS relativistic

Non-linear calculation scheme

(HO et. al.,2022)

• Evolution is adiabatic($\omega_R \gg \omega_I$). For short time($\Delta t \ll \omega_I^{-1}$),

configuration is approximately stationary.

Main Idea

Find one-parameter family of stationary configuration $\{\phi(A_0)\}_{A_0}$, and join them by conservation law.

Non-linear calculation scheme

$$\begin{split} \phi(A_0) &= \left(\tilde{R}_{11}(r;A_0) Y_{11}(\theta) + \tilde{R}_{31}(r;A_0) Y_{31}(\theta) + \tilde{R}_{51}(r;A_0) Y_{51}(\theta) \right) e^{-i(\omega_0 t - \varphi)} \\ &+ \left(\tilde{R}_{33}(r;A_0) Y_{33}(\theta) + \tilde{R}_{53}(r;A_0) Y_{53}(\theta) \right) e^{-3i(\omega_0 t - \varphi)} \\ &+ \tilde{R}_{55}(r;A_0) Y_{55}(\theta) e^{-5i(\omega_0 t - \varphi)} + \text{c.c.} \end{split}$$

- Helical symmetric
- A_0 : Amplitude of \tilde{R}_{11} at infinity

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}r} \left(\Delta \frac{\mathrm{d}\tilde{R}_{nl}}{\mathrm{d}r} \right) + \left[\frac{n^2 (\omega_0 (r^2 + a^2) - am_0)^2}{\Delta} - \mu^2 r^2 + 2an^2 \omega_0 m_0 - a^2 n^2 \omega_0^2 - l(l+1) \right. \\ \left. + a^2 (n^2 \omega_0^2 - \mu^2) \frac{1 - 2l(l+1) + 2n^2 m_0^2}{3 - 4l(l+1)} \right] \tilde{R}_{nl} \\ \left. + a^2 (n^2 \omega_0^2 - \mu^2) \left(\frac{(l-1 - nm_0)(l - nm_0)}{(2l-3)(2l-1)} \frac{N_{l-2}^{nm_0}}{N_l^{nm_0}} \tilde{R}_{nl-2} \right. \\ \left. + \frac{(l+2 + nm_0)(l+1 + nm_0)}{(2l+3)(2l+5)} \frac{N_{l+2}^{nm_0}}{N_l^{nm_0}} \tilde{R}_{nl+2} \right) \\ \left. + \int_0^{2\pi} d\varphi \int_{-1}^1 dx \; Y_{lnm_0}(x) e^{-inm_0\varphi} (r^2 + a^2 x^2) V'(\phi) = 0 \; , \end{split}$$

Axion from string theory

Compactify ten dimensional space-time

$$S_4 = \frac{M_{pl}^2}{2} \int_{M_4} d^4 x \sqrt{-g} \ R - \frac{1}{4g_{YM}^2} \int_{M_4} d^4 x \sqrt{-g} \ \mathrm{tr} \left(F_{\mu\nu} F^{\mu\nu}\right) - \frac{1}{4\kappa_{10}^2} \int_{M_4 \times Z} \tilde{H}_3 \wedge *\tilde{H}_3$$

Constraint from supersymmetry

$$d\tilde{H}_3 = \frac{\kappa_{10}^2}{g_{10}^2} \left(\operatorname{tr} \left(R \wedge R \right) - \frac{1}{30} \operatorname{tr} \left(F \wedge F \right) \right)$$

"Lagrange multiplier" a (This becomes axion)

$$-\frac{V_Z}{4\kappa_{10}^2}\int \tilde{H}_3\wedge *\tilde{H}_3 + \int a\left[d\tilde{H}_3 - \frac{\kappa_{10}^2}{g_{10}^2}\left(\operatorname{tr}\left(R\wedge R\right) - \operatorname{tr}\left(F\wedge F\right)\right)\right]$$

Integrate out H_3 and canonically normalize a

$$\int \sqrt{-g} \left[-\frac{1}{2} (\nabla_{\mu} \tilde{a})^2 + \frac{1}{64\pi^2} \frac{16\pi^2 \kappa_{10} \sqrt{V_Z}}{\sqrt{2}g_{10}^2} \tilde{a} \left(\epsilon^{\rho\sigma\kappa\lambda} R_{\mu\nu\rho\sigma} R^{\mu\nu}_{\kappa\lambda} - \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma} \right) \right]$$

Axion wave emission $M_{\rm BH}=10M_{\odot}, \chi=0.99$ (HO+, 2024)

 μM

<u>Superradiance</u>

アクシオンのようなボゾンはブラックホールからエネルギーを引き抜ける.

$$J_{\mathcal{H}^+} = -\int_{r=r_+} J^{\mu} n_{\mu} \ 2Mr_+ d\theta d\varphi \ , \quad J_{\mu} = -\frac{i}{2} (\phi^* \partial_{\mu} \phi - \phi \partial_{\mu} \phi^*)$$

 $J_{\mathscr{H}^+}$:event horizonを横切る粒子数フラックス $n^{\mu} \propto (\partial_t)^{\mu} + \Omega_H (\partial_{\varphi})^{\mu}$:event horizonの生成子 Ω_H :event horizonの角速度

$$\phi = R_{lm\omega}(r)S_{lm\omega}(\theta)e^{-i(\omega t - m\varphi)}, \omega > 0$$
を仮定

$$J_{\mathcal{H}^+} = 4\pi M r_+ (\omega - m\Omega_H) |R_{lm\omega}(r_+)|^2$$
$$J_{\mathcal{H}^+} < 0 \text{ for } \omega - m\Omega_H < 0$$

負の粒子数フラックス=ブラックホールの外で粒子数増える Superradiance!

Possible effects on axion cloud

アクシオン雲が進化するとき、以下のような様々な効果が効く

(Arvanitaki et. al.,2011,....)

3.はstring axionを考えると小さい. (Arvanitaki et. al.,2011) 4.は進化の初期段階では効かない. (Kodama&Yoshino,2014)

Coupling with EM

いずれもsuperradiant instabilityに比べて十分長いので無視する

Gravitational wave emission

重力場との結合から単色重力波を放射する. 背景重力波や連続重力波として観測可能(?)

1. Axionが対消滅し, gravitonを生成 (Arvanitaki et. al.,2011, Kodama&Yoshino, 2014)

 $\frac{\mathrm{d}P}{\mathrm{d}\Omega} \sim N_{110}^2 \frac{9\pi(\mu M)^{18}}{2^{26}M^4} (35 + 28\cos\theta + \cos 4\theta)$

 N_{110} :l = m = 1, n = 0の雲の粒子数

 $\omega_{I} \sim (\mu M)^{9}$ なので、かなり成長しないと効かない

 2. 束縛状態間の遷移に伴う重力波放射 (Arvanitaki et. al.,2011)

3. String axionなら自然に

$$S_{int} \propto \int d^4x \sqrt{-g} \phi \epsilon^{\mu\nu\rho\sigma} R_{\mu\nu\alpha\beta} R_{\rho\sigma}^{\alpha\beta}$$

が入るが,相互作用が弱すぎて効かない.

Self-interaction vs GW emission

自己相互作用と重力波によるエネルギーロスのうち どちらが効くか?

単位時間あたりのエネルギー放射で比較

 $\frac{P(2 \times (1,1,0) \rightarrow \text{graviton})}{P(3 \times (1,1,0) \rightarrow \text{axion})} \sim 10^{-6} \frac{M}{M_{\text{cl}}} \left(\frac{F_a/M_{\text{pl}}}{10^{-2}}\right)^4 \frac{1}{(\mu M)^4}$

 M_{cl} が中心BHに対して小さすぎない限り自己相互作用が効く M_{cl} が小さすぎるときはそもそも重力波放射が弱すぎて, superradiant growthが卓越

重力波放射は成長に大きな影響を与えないため、無視する