-----OzGrav-

ARC Centre of Excellence for Gravitational Wave Discovery

Gravitational Waves and Ultralight Bosons: observations from Spinning Black Holes New Horizons for Psi - Lisbon, Portugal

Ornella J. Piccinni

3 July 2024 ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) and Centre for Gravitational Astrophysics, The Australian National University, Canberra, Australia

Australian National University

Boson clouds (see Sam Dolan Lectures; Will East talk)

- Ultralight bosonic particles (scalar, vector or tensor fields; QCD axion, axion-like particles) can clump around spinning BHs due to **superradiance**
- Given a BH with $(M_{\rm BH}, \chi_i)$ and a boson particle of $m_{\rm b}$, the superradiance instability is maximized if the **confinement conditions** are satisfied $\hbar c/m_b \sim 2GM_{\rm BH}/c^2$
- Astrophysical black holes could match well with boson masses ranging from 10⁻²⁰ to 10⁻¹⁰ eV
- Potentially observable through their effects on the BH's **dynamics** and the **gravitational waves** they emit
- The gravitational wave **frequency f_{GW}** is mainly determined by the **boson mass**
- LIGO/Virgo/KAGRA are sensitive to a mass range of 10-14 to 10-11 eV (10-2000 Hz)

See the extensive literature: Arvanitaki et al., PRD 81, 123530 (2010); PRD 83, 044026 (2011); PRD 91, 084011 (2015) Brito et al., Lect. Not. Phys. 971 (2020); PRL 124, 211101 (2020) Baryakhtar et al. PRD 96, 035019 (2017); PRD 103, 095019 (2021) Siemonsen &. East, 101, 024019 (2020)

2

Boson clouds: scalar case

Superradiance condition:

 $\frac{\omega}{m} < \Omega_{BH}$

maximally efficient when

 Ω_{BH}

 $\lambda_h \sim r_s$

wave is scattered off a rotating black hole,

energy and angular momentum are extracted from a BH leading to the amplification of these fields.

[Picture credit: Ana Sousa Carvalho]

- We need: boson angular frequency < BH's outer horizon angular frequency for the growth
- field bosons condensate, occupying the same (quantum) state with huge occupation numbers
- This process (~days) subtracts energy from the BH momentum -> The BH slows down

$$au_{
m inst} \approx 20 \left(\frac{M_{
m BH}}{10 M_{\odot}} \right) \left(\frac{\alpha}{0.1} \right)^{-9} \left(\frac{1}{\chi_i} \right)
m days,$$

• The superradiance stops (at saturation) and the cloud dissipates through GWs (~years)

$$\tau_{\rm gw} \approx 6.5 \times 10^4 \left(\frac{M_{\rm BH}}{10 M_\odot}\right) \left(\frac{\alpha}{0.1}\right)^{-15} \left(\frac{1}{\chi_i}\right)$$
 years.

The boson cloud signal characterization

- The BH-boson cloud system resembles the hydrogen atom = gravitational atom
- The strain amplitude decays $h(t) = \frac{h_0}{1 + \frac{t}{\tau}}$ $h_0 \approx 6 \times 10^{-24} \left(\frac{M_{\rm BH}}{10M_{\odot}}\right) \left(\frac{\alpha}{0.1}\right)^7 \left(\frac{1\,{\rm kpc}}{D}\right) (\chi_i - \chi_c)$
- The GW frequency is twice the field frequency $f_{\rm gw} \simeq 483 \,{\rm Hz} \left(\frac{m_{\rm b}}{10^{-12} {\rm eV}}\right) \left| 1 - 7 \times 10^{-4} \left(\frac{M_{\rm BH}}{10 M_{\odot}} \frac{m_{\rm b}}{10^{-12} {\rm eV}}\right)^2 \right|$
- A small spin-up due to annihilation is present

$$\dot{f}_{\rm gw} \approx 7 \times 10^{-15} \left(\frac{m_{\rm b}}{10^{-12} {\rm eV}}\right)^2 \left(\frac{\alpha}{0.1}\right)^{17} {\rm H}$$

We do not consider the effect due to transition levels

 $\frac{1}{2}$

(when self interaction is negligible) see Collaviti et al. in prep for obs. prospect of self-interacting scalars <u>DCC: P2400284</u>

Scalar vs Vector: timescales and ho Scalar bosons Vector bosons $\tau_{\text{inst}} \approx 20 \text{ days} \left(\frac{M_{\text{BH}}}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^9 \frac{1}{\chi_i}$ $\tau_{\text{inst}} \approx 2 \text{ mins} \left(\frac{M_{\text{BH}}}{10 M_{\odot}} \right) \left(\frac{0.1}{\alpha} \right)^{7} \frac{1}{\chi_{i}}$ $\tau_{\rm GW} \approx 8 \, {\rm days} \left(\frac{M_{\rm BH}}{10 \, M_{\odot}} \right) \left(\frac{0.1}{\alpha} \right)^{11} \left(\frac{0.5}{\chi_i - \chi_f} \right)$ $\tau_{\rm GW} \approx 10^5 \text{ yr}\left(\frac{M_{\rm BH}}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^{15} \left(\frac{0.5}{\chi_i - \chi_f}\right)$ $-\chi_f \bigg) \bigg| h_0 \approx 3 \times 10^{-26} \left(\frac{M}{10 M_{\odot}} \right) \left(\frac{\alpha}{0.1} \right)^5 \left(\frac{1 \text{ Gpc}}{d} \right) \left(\chi_i - \chi_f \right) \bigg|$

$$h_0 \approx 6 \times 10^{-24} \left(\frac{M_{BH}}{10 M_{\odot}} \right) \left(\frac{\alpha}{0.1} \right)^7 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\chi_i - \chi_i \right)^2 \left(\frac{1 \text{ kpc}}{d} \right) \left(\chi_i - \chi_i \right)^2 \left(\chi_i$$

Valid in the non relativistic regime

Scalar vs Vector: Frequency Scalar bosons Vector bosons

 $f_{\rm GW} \approx 645 ~{\rm Hz}$

$$\dot{f} \approx 3 \times 10^{-14} \text{ Hz/s} \left(\frac{10 M_{\odot}}{M_{\text{BH}}}\right)^2 \left(\frac{\alpha}{0.1}\right)^{19} \chi_i^2$$

weak signals that are longer-lived

$$\left(\frac{10 \ M_{\odot}}{M_{\rm BH}}\right) \left(\frac{\alpha}{0.1}\right)$$
 (at 1st order)

$$\dot{f} \approx 1 \times 10^{-6} \text{ Hz/s} \left(\frac{10 M_{\odot}}{M_{\text{BH}}}\right)^2 \left(\frac{\alpha}{0.1}\right)^{15} \chi_i^2$$

loud signals that are shorter-lived

Data analysis POV (See also MAP's Lectures)

- the right balance between:
 - Sensitivity: digging as deed as possible in the noisy data

 - available
- signatures in gravitational wave data.
- Studying the noise is important to discriminate between real astrophysical signals and instrumental mimickers

• The variety of methods reflects the different ways it is possible to look for these long-lasting signals, choosing

Robustness: to deviations of the signal from the assumed model and being able to take noise into account

Computational efficiency: try to explore as much parameter space as possible with reduced resources

• Quite often, CW data analysis techniques can be directly applied or easily adapted to search for dark matter

• Discrimination among **different signals** in case of detection or parameter estimation might not be a trivial task

Searches of BC with Earth-based interferometers (with CW methods)

Scalar boson clouds:

- O2 data; Dergachev and Papa PRL 123 101101 (2019) O1 data)
- \bullet
- Directed:
 - targeting the Galactic Center in O3 data: no priors on BH mass, spin or ages Abbott et al. PRD 106, 042003 (2022)
 - (2020)

Methods for scalars:

All-sky semi-coherent method: D'Antonio PRD 98, 103017 (2018); - used for the all-sky search in O3 Hidden Markov model tracking (directed) Isi et al. PRD 99 084042 (2019); - used for the Cygnus X-1 O2 search Sidereal amplitude modulation, i.e. semi-coherent 5-vector (directed): D'Antonio, et al., PRD 108, 122001 (2023)

Vector boson clouds:

promising O4 events

• First all-sky survey dedicated to GW signals emitted by ultralight scalar boson clouds. Frequency range 20–610 Hz of the O3 LIGO data. A small range around zero is considered as a spin-up parameter - Abbott et al. PRD 105, 102001 (2022) (see also Palomba et al. PRL 123 171101 (2019) -

Ensemble of signals, characterization and impact on CW analyses: Zhu, et al., PRD 102, 063020 (2020); Pierini, et al., PRD 106, 042009 (2022)

targeting known galactic BHs: Cygnus X-1 O2 - rely on the mass, spin and age estimates of the target - Sun et al. PRD 101, 063020

(method) Directed post-merger remnant BHs from compact binaries: Jones et al., PRD 108, 064001 (2023) - Expected to be used for

Other ways to look for BC evidence other than CW methods

- Huang, Sci. China Phys., Mech. & Astro., 67 210411 (2024)
- PRD106, 023020 (2022): Scalar boson clouds (01+02+03)
- SGWB from **tensor** boson clouds Guo et al. Arxiv 2312.16435
- Constraints from **BH spin distributions** (spin limited by superradiance) Ng et al., PRL 126, 151102 (2021)
- Effects on the GW waveform due to **boson transfer** BBH system Guo et al. 2309.07790

• Impact of DM on binary dynamics - Baumann et al., PRD99, 044001 (2019); Hannuksela et al. Nature Astron. 3 447 (2019); Xue,

• Stochastic background generated by the superposition of all signals from scalar or vector boson cloud; Assume BH spin distribution and merger rate - Tsukada et al., PRD 103, 082005 (2021): Vector boson clouds (01+02); Yuan et al.,

• Checking the rates of hierarchical black hole mergers in nuclear star clusters - Payne et al 2022 ApJ 931 79 (2022)

Case study: all-sky boson cloud search in O3 - Abbott et al. PRD 105, 102001 (2022)

D'Antonio et al. PRD 98, 103017 (2018)

Data framework from Piccinni et al CQG 36 015008 (2019)

Search method

Search method: modulation effects

Doppler effect, which depends on frequency and source position

$$f(t) = f_0 \left(1 + \frac{\vec{\mathbf{v}} \cdot \hat{n}}{c} \right), \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{rev} + \vec{\mathbf{v}}_{rot}$$

Amplitude modulation (for signals longer than ~ 1 sidereal day) due to the response of the antenna

Relativistic effects (Einstein delay)

Search method

Candidate selection

- Histograms: moving average over a window W=1,...,10 bins (1 bin=1/T_{FFT})
- Equivalent and more efficient than building peakmaps with shorter chunks T_{FFT}/W
- Allows for robustness
- 2 candidates for each 0.05 Hz/sky position selected

Check for coincidences in 2 detectors, follow up the most significant candidates with 2 methods: FrequencyHough – tuned for standard monochromatic signals (W=1)

- Viterbi more robust against deviations (W>1)

Results: upper limits

No potential candidate remains after the follow-up

upper limits on the signal strain

- Astrophysical implications:
 - exclusion regions in the BH-boson mass \bigcirc plane
 - distance reach of the search: how far we \bigcirc can exclude the presence of an emitting system given the null detection results

Exclusion regions

BH spin = 0.9

$$b_0 \approx 6 \times 10^{-24} \left(\frac{M_{\rm BH}}{10M_{\odot}}\right) \left(\frac{\alpha}{0.1}\right)^7 \left(\frac{1\,{\rm kpc}}{D}\right) (\lambda)$$

$$h(t) = \frac{h_0}{1 + \frac{t}{\tau_{\rm gw}}}$$

assuming a BH with a given spin, distance and age we exclude some BH-boson

we exclude some BH-boson masses combination

BH spin = 0.5

19

Astrophysical reach of the search

maximum distance at which a given BH–boson cloud system, with a certain age, is not emitting CWs, as a function of the boson mass

Results depend on the properties of the simulated BH population.

Simulating a BH population with:

- Kroupa mass distribution [5, 100] M_{\odot}
- uniform spin distribution [0.2, 0.9].

The maximum distance corresponds to the distance at which at least 5% of the simulated signal have $h_0 > h_{ul} \rightarrow$ are detected.

Similar behaviour for a simulated BH population of [5, 50] $M_{\odot}.$

Directed and post-merger

$O3~GC~search \quad \text{Best }h_0~\text{UL}~7.6\times10^{-26}~\text{at}~140~\text{Hz}$ Abbott et al PRD 106, 042003 (2022)

Frequency range: [10 - 2000] Hz min spin-down: $-1.8 \times 10^{-8} \, \text{Hz/s}$ spin-up: 1×10^{-10} Hz/s Data: full O3 clean data (April 2019 - March 2020)

Sky position (Sgr A*): $\alpha = 4.650$ rad $\delta = -0.506$ rad

- standard BSD configuration 10Hz/1month
- Partial heterodyne Doppler correction
- new peakmap + FH based method
- Sum of monthly FH of 10 Hz each

Piccinni et al., PRD, 101, 082004 (2020)

boson clouds exclusion regions

Horizon distances Directed vector boson case: CBC remnants

 hidden Markov model tracking signals on timescales from hours to months. Jones et al., PRD 108, 064001 (2023)

Able to reach signals at a luminosity distance above ~1 Gpc (in current gen.)

Scalar clouds in CBC remnant are not promising in current gen. detectors

23

Conclusion

- Earth-based interferometers can be used to look for BC evidence
- New DA techniques are under development, improving also in the signal modeling
- There is a wide margin of improvement if we consider second-order effects, different self-interaction regimes, etc...
- regime, ...)
- We look forward to the upcoming O4 run!

Searches in GW data are already providing **interesting constraints** in the ultralight mass range

We might get to the point where it might be difficult to **distinguish between sources** (e.g. NS or BC?) and **between signal models** (scalar, vector, tensor, self-interaction or not, relativistic

Backup

25

M_i $[M_\odot]$	Xi	μ [10 ⁻¹³ eV]	$lpha_i$	f [Hz]	h_0 [5 Mpc/r]	$ au_{ ext{inst}}$ [day]	$ au_{ m GW}$ [yr]
3	0.90	122	0.273	5.8k	4×10^{-26}	0.1	2
10	0.90	36	0.273	1.7k	1×10^{-25}	0.3	6
60	0.70	4.0	0.179	191	$5 imes 10^{-26}$	39	8 k
60	0.90	6.0	0.273	290	7×10^{-25}	2	38
200	0.85	1.6	0.243	77	1×10^{-24}	12	511
300	0.95	1.4	0.311	66	8×10^{-24}	4	40

lsi+ PRD 99, 084042 (2019)